Как управлять коробкой робот: Как правильно ездить на роботизированной коробке передач: особенности эксплуатации РКПП

Содержание

Как правильно ездить на роботизированной коробке передач: особенности эксплуатации РКПП

Сегодня автомобили с роботизированной коробкой передач (РКПП, АМТ) составляют серьезную конкуренцию классическому гидромеханическому автомату АКПП и вариатору CVT по целому ряду причин. Прежде всего, коробка робот дешевле в производстве, также РКПП позволяет обеспечить высокую топливную экономичность, что особенно актуально с учетом жестких экологических норм и стандартов.

При этом на первый взгляд может показаться, что роботизированная трансмиссия не отличается от привычной АКПП, однако это не так. С учетом определенных особенностей и конструктивных отличий, необходимо знать, как пользоваться коробкой робот, чтобы добиться максимального комфорта при езде и продлить срок службы агрегата. 

Содержание статьи

Как правильно пользоваться роботизированной коробкой передач

Прежде всего, роботизированная КПП фактически представляет собой МКПП, в которой управление сцеплением, а также выбор и включение/выключение передач осуществляется автоматически.

Другими словами, коробка робот это все та же «механика», только передачи переключаются без участия водителя.

Еще отметим, что роботизированная трансмиссия также имеет ручной (полуавтоматический) режим, то есть водитель может самостоятельно повышать и понижать передачу аналогично Типтроник на АКПП.  Становится понятно, что производители РКПП стремятся имитировать классический автомат для упрощения взаимодействия. По этой причине робот имеет похожие режимы.

  • Как и на АКПП, имеется режим «N» (нейтраль). В этом режиме крутящий момент на колеса не передается. Указанный режим нужно включать при простое с заведенным двигателем, в том случае, если выполняется буксировка авто и т.д.  Режим «R» (реверс) означает движение назад.
  • Также коробка робот имеет режимы А/М или Е/М, что является аналогом режима D (драйв) для движения вперед. Такое обозначение свойственно простым «однодисковым» РКПП, то есть коробка имеет только одно сцепление.  При этом следует отметить, что роботизированные коробки передач с двойным сцеплением (например, DSG)  имеют режим, обозначенный  литерой D (драйв), как и на обычных АКПП.
  • Что касается режима М, это значит, что коробка переведена в режим ручного управления (аналогично Типтроник), а обозначения «+» и «-» указывают, куда нужно двигать селектор для повышения или понижения передачи. Еще добавим, что на коробках типа DSG управление ручным режимом может быть выполнено в виде отдельной кнопки на селекторе.

Эксплуатация роботизированной коробки передач: нюансы

Итак, если в автомобиле стоит роботизированная коробка автомат (робот), как пользоваться такой КПП, мы рассмотрим ниже. Казалось бы, данная коробка похожа на АКПП по принципу работы и не сильно отличается от аналога.  Другими словами,  нужно только перевести селектор в то или иное положение, после чего автомобиль начнет движение, причем дальнейшая езда будет похожа на машину с классической АКПП.

Сразу отметим, РКПП сильно отличается от автомата с гидротрансформатором. По этой причине нужно знать, как управлять коробкой робот, а также правильно эксплуатировать такую КПП.

  • Начнем с прогрева, то есть нужно ли прогревать коробку робот зимой. Как известно, для АКПП предварительный погрев обязателен, так как трансмиссионное масло (жидкость ATF) должно немного разжижиться. При этом для роботизированной коробки требования менее жесткие.

Если просто, однодисковый робот нужно греть точно так же, как и обычную механику. Что касается DSG, особенно с «мокрым» сцеплением, прогреть такую РКПП необходимо чуть дольше, так как в ней залит большой объем трансмиссионной жидкости.

В любом случае, как для МКПП, так и для РКПП независимо от типа, общие правила похожи. Важно понимать, что за время простоя масло в коробке стекает и густеет при низких температурах. Это значит, что двигатель должен поработать определенное время на холостых, чтобы прогрелся сам ДВС, а также масло успело растечься по полостям коробки передач.

При этом, в отличие от АКПП, селектор в разные режимы переводить не нужно, то есть достаточно включить нейтраль N. Дальнейшее движение должно быть в щадящем режиме, без резких стартов, на невысокой скорости. Помните, масло в коробке греется намного дольше, чем в двигателе. Чтобы трансмиссионная жидкость полностью прогрелась и вышла на рабочие температуры, необходимо проехать, в среднем, около 10 км.

  • Езда на подъемах и спусках с коробкой робот также является моментом, который заслуживает отдельного внимания. Существует много моделей с РКПП (как правило, в бюджетном сегменте), которые не имеют системы помощи при старте на подъем.

Это означает, что трогаться на подъем с роботизированной коробкой  нужно точно так же, как и на механике. Простыми словами, потребуется использовать ручник (стояночный тормоз). Сначала следует затянуть ручник, затем включается режим A, после этого водитель нажимает на педаль газа и параллельно снимает машину с ручника. Указанные действия позволяют тронуться в гору без отката.

Кстати, в этом случае также можно пользоваться не только автоматическим, но и ручным режимом, включая первую передачу. Единственное, не следует сильно давить на газ, так как возможна пробуксовка колес.   Еще добавим, что алгоритм работы РКПП предполагает, что такая коробка не позволяет двигаться в натяг, то есть на подъеме нужно повышать обороты двигателя.

Что касается спусков, в этом случае отпадает необходимость каких-либо дополнительных действий. Водитель просто переводит селектор в режим A или D, отключает стояночный тормоз и начинает движение. При езде под уклон будет проявляться эффект торможения двигателем. 

  • Остановка на светофоре, движение в пробке и длительная стоянка. Сразу начнем с кратковременных остановок и пробок. Прежде всего, если стоянка короткая (около 30-60 сек.), например, на светофоре, нет необходимости переводить селектор из режима А или D в N. Однако более длительный простой все же потребует перехода на нейтраль.

Дело в том, что когда на роботе включен режим «драйв» и водитель останавливает автомобиль при помощи тормоза, сцепление остается выжатым. Становится понятно, что если машина находится в пробке или подолгу стоит на светофоре, нужно переключаться на «нейтралку», чтобы уберечь сцепление и продлить срок службы данного узла.

Что касается парковки или стоянки, после того, как автомобиль полностью остановлен, селектор РКПП переводится из режима A в N, затем затягивается ручник, после чего можно отпустить педаль тормоза и глушить двигатель автомобиля.

  • Дополнительные режимы коробки робот. Следует отметить, что роботизированная коробка также может иметь такие режимы как S (спортивный) или W (winter, зимний), причем последний часто обозначается в виде «снежинки».

Не вдаваясь в подробности, в зимнем режиме коробка передает крутящий момент на колеса «мягко», чтобы избежать пробуксовок на заснеженной дороге или на льду. Как правило, автомобиль в этом режиме трогается с места на второй передаче, а также плавно переходит на повышенные. В спорт режиме коробка робот переходит на повышенные передачи на высоких оборотах, что улучшает приемистость и разгонную динамику. При этом расход топлива также увеличивается.

Еще добавим, что во время езды роботизированная коробка позволяет переключаться из автоматического режима в ручной и обратно. Это значит, что водитель может прямо на ходу повышать и понижать передачи. Однако получить полный контроль над работой КПП не получится, так как режим полуавтоматический.

Это значит, что если скорость и обороты ДВС высокие, при этом водитель хочет понизить передачу, например, сразу с 4-й на 2-ю, ЭБУ коробкой не позволит реализовать такое переключение и включит только наиболее подходящую передачу.

Такая особенность является «защитой», так как понижение передач на две ступени вниз может привести к тому, что обороты двигателя «упрутся» в отсечку, момент переключения будет сопровождаться ударом, сильной нагрузкой на трансмиссию и т.д. Другим словами, включение той или иной передачи возможно только в том случае, если диапазон допустимых оборотов и скорость ТС, прописанные в ЭБУ, позволяют включить выбранную водителем передачу.    

Советы и рекомендации

Как правило, водители, которые ранее эксплуатировали автомобили с классической АКПП, отмечают определенные особенности и отличия простых роботизированных коробок с одним сцеплением.

Данная коробка (однодисковый робот), может «затягивать» включение передач, отличается «задумчивостью» при понижении или повышении передачи и т.п. Также РКПП может работать не совсем корректно при резких нажатиях на акселератор и больше подходит для спокойной езды.

Чтобы резко ускориться, оптимально перейти в ручной режим, а также нажимать на газ плавно, чтобы минимизировать задержки и провалы. Что касается торможения двигателем, данный эффект вполне приемлемо реализован в автоматическом режиме.

Также для РКПП характерны легкие толчки при переключении передач. Все дело в том, что толчок появляется в момент, когда сцепление «смыкается». Избежать таких толчков можно, интуитивно угадывая, когда электроника инициирует переключения, и немного сбрасывая газ перед таким переключением.

Рекомендуем также прочитать статью о том, что такое коробка DSG. Из этой статьи вы узнаете об особенностях данного типа КПП, а также о преимуществах и недостатках преселективных коробок передач с двойным сцеплением.

Еще добавим, что сходство с механикой и наличие ручного режима все равно не означает, что на машине с роботом можно активно буксовать. Дело в том, что если на МКПП водитель «подпаливает» сцепление, далее износ узла и момент включения/выключения компенсируется изменением хода педали сцепления, также сам водитель чувствует момент включения и выключения механизма и т.д.

В случае с роботом, электроника попросту не «умеет» учитывать такой износ, что приводит к отклонению от запрограммированной точки схватывания, то есть происходит нарушение калибровки точно настроенных исполнительных механизмов. По этой причине один раз в 10-15 тыс. км необходимо выполнять инициализацию (обучение) коробки робот, так как игнорирование данного правила может привести к тому, что коробка падает в аварийный режим. 

Что в итоге

С учетом приведенной выше информации становится понятно, что среди всех роботизированных коробок оптимальным вариантом можно считать преселективный робот с двумя сцеплениями (например, DSG или аналоги).

Данные коробки передач лишены многих недостатков однодисковых РКПП, а также обеспечивают максимум комфорта и высокую топливную экономичность. Также следует отметить, что робот с двойным «мокрым» сцеплением при грамотном обслуживании и эксплуатации имеет больший срок службы по сравнению с аналогами 

Что касается езды, в большей степени отличия РКПП от АКПП проявляются именно в случае с однодисковыми роботизированными коробками передач. Если автомобиль оснащен такой коробкой, перед началом активной эксплуатации рекомендуется отдельно изучить особенности работы трансмиссии данного типа на практике.

Напоследок отметим, что в случае с DSG и аналогами, особенно если ТС имеет систему помощи при старте на подъеме, особой разницы между АКПП и РКПП водитель не заметит. Основной рекомендацией в этом случае остается только необходимость переводить коробку из «драйва» в «нейтраль» при простоях больше 1-2 минут. 

 

Читайте также

Как правильно управлять роботизированной коробкой передач

На современных автомобилях используется несколько видов коробок передач – механическая, автоматическая, вариаторная. Механическая коробка отличается своей надежностью, но требует от водителя навыков управления. Автоматическая же значительно проще в управлении, но более «капризна» в техническом плане. Недавно же конструкторы выпустили еще один тип КПП – роботизированная. В ней они постарались соединить воедино надежность «механики» с удобством «автомата». И это у них получилось – все больше автопроизводителей комплектуют свои авто роботизированной коробкой передач.

Немного об устройстве

Суть такой коробки достаточно проста – имеется механическая КПП и электронный блок ее управления. У РКПП все функции, которые должен был выполнять водитель с механической коробкой (выжим сцепления, перевод рычага коробки в нужное положение) выполняется актуаторами – сервоприводами электронного блока.

Благодаря этому надежность КПП возросла за счет использования классической «механики» и возросло удобство ее пользования. Водителю всего лишь необходимо переводить селектор в нужное положение (как в автоматической КПП) и наслаждаться ездой, а электронный блок позаботится о том, чтобы выполнялось переключение передач.

Устройство роботизированной коробки передач

При всем этом многие роботизированные коробки оснащаются еще и ручным управлением, что позволяет управлять водителю коробкой самостоятельно, с единственным отличием – нет необходимости выжимать сцепление.

Особенности управления

Некоторые режимы работы РКПП получила от автоматической коробки, а именно:

  • «N» — нейтраль. Режим, при котором крутящий момент на колеса от КПП не передается. То есть двигатель работает, на коробку передается вращение, но из-за положения шестерен на колеса оно не передается. Используется при длительной стоянке авто, перед началом движения, после остановки;
  • «R» — движение задним ходом. Здесь все просто, водитель переводит селектор в это положение и авто движется назад.

Другие же режимы роботизированной коробки имеют свое обозначение:

  • «А/М» или «Е/М» — движение вперед. Этот режим соответствует режиму «D» автоматической коробки, то есть автомобиль движется вперед, а КПП производит переключение передач. В режиме «М» выполняется ручное управление. Переводом селектора в определенный паз выбирается необходимый режим;
  • «+», «-» — переключатель передач. Кратковременные переводы селектора в сторону «+» или «-» обеспечивают переключение передачи при ручном режиме управления «М».

Требуется ли прогрев коробки?

Вроде все просто, и ничего сложного в управлении такой коробки нет – достаточно перевести селектор в нужное положение, и начать движение. И все же следует знать, как управлять коробкой робот, чтобы она работала без проблем.

Начнем с интересного вопроса – нужно ли прогревать КПП перед началом движения зимой? Для автоматической коробки в зимний период прогрев обязателен и выполняется он кратковременным переводом селектора во все положения.

Роботизированная коробка, по сути, механическая и не требует прогрева. И все же зимой перед началом движения прогреть РКПП следует, хотя это не совсем прогрев. Во время стоянки масло в коробке стекает вниз и из-за мороза загустевает. Поэтому рекомендуется зимой после запуска мотора дать время, чтобы масло скорее не прогрелось, а просто растеклось по элементам коробки, снижая между ними трение. Достаточно просто постоять пару минут с заведенным мотором, при этом селектор переводить в разные режимы не нужно, достаточно держать его в положении «N». После этого движение нужно начинать плавно, без резких рывков и проехать так хотя бы 1 км, что обеспечит полный прогрев масла.

Начало движения на подъем, его преодоление, спуск

Многие автомобили с РКПП не оборудованы системой помощи старта на подъем, поэтому правильно начинать движение нужно научиться самому водителю. При старте на подъем с роботизированной коробкой необходимо поступать, как и с «механикой». Для начала движения селектор переводится в режим «А», плавно нажимается акселератор и одновременно авто снимается с ручника. Такое действие исключит откат авто назад. Одновременно жать на газ и снимать с ручника следует потренироваться, чтобы водитель чувствовал двигатель и понимал, когда сцепление начало включаться и можно снимать с ручника.

При начале движения на подъем в зимний период лучше использовать ручной режим, при этом устанавливать первую передачу. Сильно газовать не стоит, чтобы не было пробуксовки колес.

При движении на подъем при выбранном автоматическом режиме коробка самостоятельно начнет переходить на пониженные передачи, что является вполне логичным, ведь при повышенных оборотах преодолеть подъем легче. Такая КПП оснащена гироскопом, который определяет положение автомобиля, и если датчик показывает подъем, то коробка буде работать соответственно. Можно совершать движение и в ручном режиме, зафиксировав определенную передачу. Важно понимать, что РКПП не даст двигаться в натяг, поэтому при подъеме обороты двигателя должны быть не меньше 2500 об/мин.

При спуске же никаких действий от водителя не требуется. Достаточно перевести селектор в положение «А», и снять ручник. При этом авто будет производить торможение мотором.

Остановка, парковка

И третий немаловажный вопрос – правильность парковки и остановки. После полной остановки авто, селектор необходимо перевести в нейтраль «N», поставить на ручник и после заглушить двигатель. При кратковременных остановках перевод селектора в нейтраль необязателен, вполне можно оставаться и на режиме «А». Но стоит учитывать, что при остановке сцепление остается выжатым. Поэтому в пробке или на светофорах, когда остановка затягивается по времени, все же следует переходить на нейтраль.

Другие режимы

Это основные правила, как управлять роботизированной коробкой. Но есть и другие особенности, к примеру, некоторые РКПП имеют дополненные режимы – спорт и зимний, так называемая «снежинка».

«Снежинка» направлена на то, чтобы как можно плавнее и без пробуксовок начать движение на обледенелой дороге. Все что она делает, это обеспечивает начало движения сразу со второй передачи и более плавные переходы на повышенные передачи.

Режим «спорт» производит переход на повышенные передачи при больших оборотах, чем в обычном режиме. Это позволяет быстрее ускоряться. То есть, если при обычном режиме переход на 2 передачу выполнялся, к примеру, при 2500 об/мин, то в режиме «спорт» этот переход будет осуществляться при 3000 об/мин.

Теперь о возможности перехода из автоматического режима в ручной и обратно во время движения. Роботизированная коробка без проблем позволяет это делать. Также позволяется самостоятельно понижать или повышать передачу для изменения скорости движения. Но стоит учитывать, что полностью управление коробкой электронный блок не передаст, он будет постоянно контролировать работу.

Поэтому если водителю вздумается перейти, к примеру, на две передачи вниз, то электронный блок сделать это даст, но при этом проконтролирует обороты двигателя и если они не будут соответствовать выбранной передачи, электроника самостоятельно выполнит переход на допустимую передачу – сработает так называемая «защита от дурака».

Здесь все просто – электронный блок запрограммирован так, что каждой передаче соответствует определенный диапазон оборотов двигателя. И если выбранная вручную передача соответствует своему диапазону, то коробка выполнит переключение, а если нет – включит необходимую скорость.

Полезные советы

Напоследок некоторые рекомендации по эксплуатации и обслуживанию роботизированной коробки.

Такая коробка «не терпит» резких нажатий на педаль газа, поэтому лучше осуществлять движение в спокойном режиме. Даже при необходимости ускориться — лучше жать на акселератор плавно, при этом стоит перейти в ручной режим. А при торможении следует наоборот – переходить в автоматический режим.

Особенностью РКПП является наличие небольших толчков при переключении передач. От них можно избавиться достаточно просто – при переключении передач сбрасывать обороты двигателя, то есть действовать по аналогии с обычной механической коробкой.

Наличие ручного режима позволяет даже выполнять выезд «враскачку» в случае, если авто застряло в сугробе. Но при этом на пользу КПП это не пойдет, так как буксовать на РКПП не рекомендуется, это может привести к декалибровке исполнительных механизмов. Поэтому застрявшее авто все же лучше извлекать с привлечением сторонней помощи.

Обязательно при каждом ТО делать инициализацию и проводить диагностику состояния РКПП, что позволит устранить все неисправности коробки еще на раннем этапе.

Есть и другие мелкие особенности таких коробок, которые зависят от изготовителя. Ими лучше сразу поинтересоваться, чтобы в дальнейшем не возникло недоразумений с эксплуатацией роботизированной коробки.

Как управлять коробкой роботом. Как ездить на роботизированной коробке передач. Коробка передач робот, что это такое и как она работает. Как ездить на коробке «робот

Что такое роботизированная КПП? Роботизированная коробка передач (другое наименование — автоматизированная коробка передач , обиходное название — коробка-робот ) представляет собой механическую коробку передач, в которой функции выключения сцепления и переключения передач автоматизированы. Автоматизация данных функций стала возможной за счет применения в управлении коробкой электронных компонентов.

Роботизированная коробка передач сочетает в себе комфорт , надежность и топливную экономичность механической коробки передач. При этом «робот» в большинстве своем значительно дешевле классической АКПП.

В настоящее время практически все ведущие автопроизводители оснащают свои автомобили роботизированными коробками передач. Все коробки имеют свои запатентованные названия и различаются по конструкции.

Вместе с тем, можно выделить следующее общее устройство роботизированной коробки передач :

Коробки-роботы могут иметь электрический или гидравлический привод сцепления и передач . В электрическом приводе исполнительными органами являются сервомеханизмы (электродвигатели). Гидравлический привод осуществляется с помощью гидроцилиндров. В зависимости от типа привода роботизированные коробки передач имеют устоявшиеся названия:

  • собственно роботизированные коробки передач (электропривод) ;
  • секвентальные коробки передач (гидропривод ).

Название «секвентальная» коробка получила от sequensum — последовательность, имеется ввиду последовательное переключение передач в ручном режиме.

Во многих источниках информации коробки передач носят одно общее название — роботизированные.

Электрический привод сцепления и передач имеют следующие конструкции коробок:

  • Easytronic от Opel;
  • MultiMode от Toyota.

Значительно больше конструкций «роботов» имеют гидравлический привод :

  • SMG , DCT M Drivelogic от BMW;
  • DSG от Volkswagen;
  • S-Tronic от Audi;
  • Senso Drive от Citroen;
  • 2-Tronic от Peugeot;
  • Dualogic от Fiat.

Система управления роботизированной коробкой передач включает следующие конструктивные элементы:

  • входные датчики;
  • электронный блок управления;
  • исполнительные механизмы коробки передач.

В роботизированных коробках с гидравлическим приводом в систему управления также включен гидравлический блок управления , который обеспечивает непосредственное управление гидроцилиндрами и давлением в системе.

Принцип работы роботизированной коробки передач заключается в следующем: на основании сигналов входных датчиков электронный блок управления формирует алгоритм управления коробкой в зависимости от внешних условий и реализует его через исполнительные механизмы. По команде от электронного блока управления гидроцилиндры (или электромоторы) в нужный момент размыкают и замыкают сцепление, а также включают подходящую передачу. Водитель с помощью селектора лишь задает желаемый режим работы робота: например передний или задний ход.

На всех роботизированных коробках предусмотрен режим ручного переключения передач, аналогичный . Например, коробка 2-Tronic способна работать в трех режимах. Первый — полностью автоматический. В этом случае водитель может вообще не задумываться о переключениях передач и ехать как на обычном «автомате». Второй — это так называемый полумеханический, который включается в том случае, если водитель решит сам переключить передачу с помощью подрулевых лепестков, не выходя из автоматического режима. Такая ситуация возникает, например, при обгоне, когда необходимо срочно переключиться «пониже». Если же резкого ускорения не произошло или после возвращения к обычному режиму езды, коробка через некоторое время снова перейдет в автоматический режим. Третий вариант работы КПП — полностью ручной. Выбор передачи лежит только на водителе, однако и тут не все в его власти — при достижении максимальных оборотов компьютер отдаст команду на переключение на следующую ступень.

Основным недостатком первых роботизированных коробок передач являлось большое время переключения передач (до 2 с), что приводило к провалам и рывкам в динамике автомобиля и снижало комфорт от управления транспортным средством. Решение указанной проблемы было найдено в применении коробки передач с двумя сцеплениями, что обеспечило переключение передач без разрыва потока мощности.

Весь алгоритм работы коробки с двумя сцеплениями сводится к тому, что пока работает первая передача, уже ждет включения вторая и как только блок управления даст команду, включается второе сцепление, внешний первичный вал и вторая передача. Далее по накатанной, — ждет сигнал третья передача и т.д. Время переключения сокращается до минимума, даже водитель не сможет так быстро переключить МКПП.

Данное техническое решение реализовано в коробках DSG, S-Tronic (время переключения передач 0,2-0,4 с), а также коробках SMG и DCT M Drivelogic (время переключение передач 0,1с), устанавливаемых на спортивные автомобили фирмы BMW.

В настоящее время самыми распространенными и технически совершенными являются роботизированные коробки передач DSG и S-Tronic. Коробка S-Tronic является аналогом коробки DSG, но в отличие от нее устанавливается на задне- и полноприводные автомобили. www.systemsauto.ru

Автолюбители, решившие приобрести автомобиль с роботизированной коробкой передач нередко, задаются вопросом, как ездить с такой системой? В статье мы рассмотрим, как пользоваться коробкой робот. Автоматическая роботизированная КПП, обиходное наименование коробка робот – это обычная МКПП, заключившая в себе компактный электронный блок, электронное управление сцеплением и автоматизированное переключение передач. Коробка робот сочетает в себе надежность, комфорт и топливную экономичность. Сегодня практически все автопроизводители оснащают свои машины такими коробками, у каждой из них есть своя уникальная конструкция и запатентованное название. Что самое интересное «робот» дешевле классической АКПП.

Роботизированная коробка передач

Одна из ветвей развития механических трансмиссий привела к созданию роботизированной КПП, которая соединила в себе надежность «механики» с удобством «автомата». За счет того, что вся работа водителя стала выполняться актуаторами – сервоприводами блока, возросли характеристики. Теперь электронный блок сам заботится о переключении передач. Все что нужно от человека — это устанавливать селектор в нужное положение, как в КПП и наслаждается поездкой.

Есть роботы с режимом ручного переключения передач. Например, коробка 2-Tronic может служить в трех режимах. Первый – автомат, когда человек, вообще не трогает передачи. Второй – полумеханика, на случай если водитель захочет самостоятельно управлять сцеплением, например, при обгоне другого авто и в то же время находится в автоматическом режиме. Третий режим – полностью ручной, где все зависит только от водителя.

Что касается любителей быстрой езды, то для них в самый раз подойдет кулачковая роботизированная коробка передач. Она самая быстрая из всех видов роботизированных коробок, переключать скорости можно за 0,15 секунд. Машины, имеющие такую коробку, содержат педаль сцепления, но применяется она лишь когда транспортное средство трогается с места. Далее, переключение происходит как в спортивном мотоцикле – не используя сцепление.

Преселективная коробка переключения передач

РКПП могут иметь электрический или гидравлический привод сцепления. В первом варианте «органами» выступают сервомеханизмы (электродвигатели). Что касается гидравлического, то здесь все основывается на гидроцилиндрах. Гидравлическим приводом оснащают свои роботизированные коробки такие автопроизводители, как: Peugeot, Fiat, Renault, BMW, Volkswagen, Citroen и другие. Что касается электрического привода, то с ним работают компании: Ford, Opel, Nissan, Toyota, Mitsubishi. Остальные компании корейских производителей пока не решаются вводить роботов, из-за сложности конструкции и обслуживания.

Принцип работы роботизированной коробки передач

РКПП имеет тот же принцип действия, что и механическая трансмиссия. У нее имеются такие же три вала: ведомый, промежуточный и ведущий, те же шестерни и передаточные числа. Как было упомянуто выше, роботами управляют сервоприводы, иначе как актуаторы. Эти устройства вводят и выводят из зацепления шестерни валов, а также соединяют и разъединяют коробку с маховиком двигателя. Контроль над процессом взял на себя электронный блок, посылающий команды на гидравлический привод или электродвигатель. На основании сигналов входных датчиков блок формирует алгоритм, управления зависящий от внешних условий, и реализует его через исполнительные механизмы. Все что остается водителю это переключать лепестковым селектором передачи.

Автоматическая коробка передач с гидротрансформатором

Роботизированные КПП с двойным сцеплением

Так как в первых коробках роботах время переключения сцепления медленное (до 2 с), приводящее к зависаниям и толчкам в динамике, было решено устранить проблему при помощи создания роботизированной коробки передач с двойным сцеплением, которая переводит скорости без разрыва потока мощности. Технология возникла еще в конце 80-х годов прошлого века. Суть в том, что два сцепления работают попеременно, а не сразу оба. Вместе с двойным сцеплением преселективные коробки содержат еще два первичных вала.

Алгоритм таков — пока действует первая передача, сигнал о запуске поступает к второй. Таким образом, крутящий момент переходит сначала на ведущий вал, пока последующая – ждет своей очереди, будучи уже включенной через второй первичный вал, но еще разъединенной с ведущим валом. Так, время переключения сводится к минимуму, что нельзя сделать на МКПП при ручном управлении. Благодаря устройству работы двух сцеплений, езда на транспортном средстве получается плавной и мягкой, однако, в конструктивном плане такой аппарат достаточно сложен и его обслуживание может обойтись дорого. Наблюдать подобное техническое решение, возможно на коробках DSG, S-Tronic, SMG и DCT M Drivelogic, идущие, как правило, на спортивных авто фирмы BMW.

Нужен ли прогрев коробки?

Переходим к рассмотрению вопроса как ездить на роботе в особенностях эксплуатации. Многих волнует, требуется ли прогревать РКПП зимой? По сути, робот не нуждается в прогреве, но ну думаем это лишним, не будет. Потому что во время застоя масло в коробке стекает вниз и под действием мороза густеет. Чтобы его прогреть для нормального функционирования следует просто постоять несколько минут с заведенным двигателем, в это время селектор переводить не требуется. Затем трогаться с места стоит плавно, двигаясь равномерно без рывков с минимальными оборотами необходимо проехать где-то километр.

Летом, чтобы масло растеклось по системе, будет достаточно и одной минуты. Если не прогревать машину, то масло может плохо смазать подшипник, а это вызовет неполное сведение диска, корзины и трение с последующим перегревом.

Несколько полезных советов:


Начало движения на подъем, его преодоление, спуск

Некоторые машины с РКПП не оснащены функцией помощи старта на подъем, по этой причине необходимо самому научится правильно двигаться в таких ситуациях. С коробкой роботом нужно вести себя точно так же как и с МКПП. Ставим селектор в режим «А» и медленно давим на акселератор, попутно убирая машину с ручника. Это поможет автомобилю не скатиться назад. Перед этим желательно потренироваться, чтобы прочувствовать и понимать, в какой момент сцепление начало включаться и можно снимать с ручника.

Если на гору нужно подниматься зимой, то лучше переключится на ручное управление установив первую передачу или режим «М1», Помните, что давление на газ должно быть максимальным, это не вызовет пробуксовки. Когда в машине имеется гироскоп, на подъёме взят автоматический режим, то коробка начнет сама переключаться на нужные передачи. Робот сам определяет положение и начинает перещелкивать скорости — в основном на пониженные. В зависимости от ситуации можно перевести рычаг в режим «М» и зафиксировать текущую скорость. Когда скорость вас не устраивает можно выбрать необходимую, при этом не следует опускать обороты ниже 2500 и превышать 5000. Во время спуска делать ничего не нужно, будет достаточно просто перевести селектор в режим «А» и убрать с ручника.

Схема работы РКПП

Городские условия/остановка, парковка

Есть мнения, что коробка робот меньше уживается в условиях города с пробками, и это сокращает ее срок службы. Совет: после полной остановки машины, селектор необходимо выставить в режим «N» нейтраль, поставить на ручник и далее выключить мотор. Если остановки кратковременные, то переводить селектор в режим нейтраль не нужно, находитесь на положении «А». Так как при остановке сцепление остается выжатым, то при пробках или светофорах с задержкой больше минуты лучше двигатель глушить.

Другие режимы

Существуют дополнительные приложения систем, помимо рассмотренных основных. Так, некоторые роботизированные коробки оснащены положением – спорт и зимний, иное название «снежинка». Режим «Снежинка» нужен для создания плавного хода на скользком пути. Она обеспечивает движение, со второй передачи переводя плавно на повышенную скорость.
Положение «спорт» создает переход на повышенные передачи при больших оборотах, что дает возможность быстрого ускорения.

Машина с коробкой роботом

Как ездить на роботизированной коробке передач правильно мы рассмотрели, теперь дадим несколько практических советов:

  1. На старте не следует выжимать газ, когда необходимо прибавить скорость педаль нужно жать уверенно, но плавно.
  2. Лучше проводить инициализацию в сервисном центре несколько раз за год – это сведет к минимуму дерганья и рывки.
  3. Во время ускорения руководствуйтесь логикой МКПП.

В прогрессивных моделях транспортных средств устанавливаются различные формы коробок передач. Наибольшее распространение получили следующие варианты: механический, автоматический, вариаторный. МКПП характеризуется высокой степенью надежности, с другой стороны, он требует от человека хороших навыков управления машиной. Второй вариант существенно проще в эксплуатации, но немного «капризен» в техническом плане. Как можно увидеть, характеристика обоих видов включает уникальные особенности: плюсы и минусы. Именно по этой причине конструкторы создали еще одну коробку передач, имеющую существенные отличия от других разновидностей. Коробка робот все чаще используется при оснащении автомобилей.

Внешний вид РКПП

Данная разновидность не так уж сложна, если говорить об ее устройстве. В состав входит механическая коробка и электронный блок, предназначенный для управления. У готового изделия имеются в наличии полный спектр функций, раньше исполнявшихся автомобилистом с механикой. Сюда относятся, в частности: переведение рычага в определенное положение, выжимание сцепления и так далее. Отчасти расширенная функциональность объясняется наличием актуаторов, то есть, сервоприводов, которые находятся внутри блока.

Строение роботизированной коробки

К основным преимуществам новой разработки можно отнести надежность и удобство эксплуатации. Человеку, управляющему автомобилем с роботом, достаточно переводить селектор в то положение, которое нужно, и получать удовольствие от вождения. Электронный блок берет на себя заботы насчет того, чтобы переключение передач осуществлялось верно. Хотелось бы отметить, что большая часть роботизированных коробок оборудуются в качестве дополнения ручным управлением, что дает водителю возможность ездить на коробке, и управлять машиной самостоятельно. Есть лишь одно отличие, которое заключается в отсутствии выжимать сцепление.

Схема работы РКПП

Как ездить на роботизированной коробке передач?

Часть форматов функционирования робота имеют отличия, если проводить сравнение с автоматической моделью. В список уникальных режимов работы относятся:

  1. «N» — нейтральный вариант, во время которого мотор продолжает функционировать, на оборудование передается вращение, однако на колеса оно не поступает, что объясняется расположением шестерен. Режим актуальнее использовать при продолжительной стоянки, а также перед стартом и после того, как авто остановилось.
  2. «R» — перемещение назад. Для того, чтобы войти в данный режим автолюбитель должен переместить селектор в заданное положение, за счет чего машина начинает перемещаться назад.
  3. «А/М» (иногда называется «Е/М») — перемещение вперед. Данный режим – это то же самое, что и режим «D», который есть во всех коробках автоматического типа. При его использовании машина перемещается вперед, а коробка передач сама выполняет переключение. При активизации режима «М» управление осуществляется вручную. За счет перевода селектора в определенное положение пользователь выбирает тот режим, что ему нужен в данный момент времени.
  4. «+», «-» — предназначен для переключения передач. Непродолжительные переводы селектора сторону плюса или минуса способно обеспечить переключение передачи при выборе режима управления вручную.
  5. Потребность в подогреве

С первых же дней использования транспортного средства с РКПП можно понять, что в водительской работе нет ничего сложного. Вы поймете, как пользоваться новинкой, ведь для грамотного управления нужно всего лишь переводить селектор в выбранное положение и перемещаться по трассе. Но для того, чтобы устройство функционировало без каких-либо проблем и сбоев, нужно знать, как его эксплуатировать.

Нужно ли прогревать машину зимой?

Как управлять роботизированной коробкой передач? Для начала нужно определиться с тем, есть ли необходимость в прогревании коробки перед началом использования в зимнее время. Если вы используете автоматическое приспособление, то знаете о том, что в холода нельзя обойтись без предварительного прогрева, который выполняется путем непродолжительного перевода селектора во все существующие положения.

Езда на автомобиле с роботизированной коробкой передач не требует проведения дополнительных манипуляций, даже если за окном минусовая температура. Однако, зимой коробку передач все же следует подготовить к предстоящей эксплуатации. Дело в том, что в то время, когда машина стоит, масло, находящееся внутри устройства, стекает вниз и из-за пониженных температур, его консистенция изменяется: вещество становится намного гуще.

По этой причине в холодное время года рекомендуется запустить мотор и выждать некоторое время для того, чтобы масло разогрелось и распределилось по всем элементам, входящим в состав коробки. Это позволит сократить трение и уменьшить износ деталей, соприкасающихся между собой. Чтобы процесс прошел успешно, требуется выстоять две минуты, заведя двигатель.

Затем можно плавно, стараясь не делать резких рывков, переместиться на километр, что поспособствует оптимальному прогреву масляной жидкости.

При этом совершенно не обязательно переводить селектор в различные положения, достаточно оставить его в нейтральном режиме.

Особенности вождения с роботизированной коробкой

Большая часть машин, оборудованных самыми прогрессивными моделями коробок передач, не оснащены системой помощи старта для подъема, а потому эксперты рекомендуют начинать движение самостоятельно. В подобной ситуации действовать нужно, как и в случае в механизированной коробкой, то есть, селектор следует перевести в режим «А», а после нажать на акселератор, параллельно сняв машину с ручника. Это исключит вероятность того, что транспортное средство начнет откатываться назад. Стоит заблаговременно потренироваться в выполнении указанных действий, чтобы научиться управлению, почувствовать двигатель и без промедления распознавать момент, когда сцепление уже включилось и нужно снять машину с ручника.

Вы пользовались авто в зимнее время? В таком случае вы знаете о том, что для того, чтобы воспользоваться ручным режимом, установив первую передачу, не рекомендуется усиленно газовать, в противном случае есть некоторый риск того, что колеса начнут буксовать.

Во время движения на подъем при определенном режиме, выбранном автоматически, устройство без помощи человека переходит в более низкие передачи, что объясняется с логической точки зрения: при слишком высоких оборотах намного проще преодолеть подъем. РКПП оборудована гироскопом, определяющим расположение машины в пространстве. Если индикатор показывает подъем, устройство начинает работать адекватно ситуации. Допускается выполнять перемещение в ручном режиме, для этого нужно зафиксировать выбранную передачу. Нельзя забывать о том, что коробка передач не позволяет перемещаться в натяг, а потому при подъеме оборачиваемость двигателя изменяется и составляет не менее 2500 оборотов за минуту.

Во время спуска от человека, управляющего машиной, не требуется ничего. Ему нужно всего лишь перевести селекторный рычаг в положение «А», убрать стоячий тормоз. В такой ситуации машина будет тормозить за счет мотора.

Как выполнить остановку?

Для водителей также важен вопрос, который касается остановки и парковки. Очень важно знать, как правильно ездить, чтобы автомобиль исправно служил на протяжении долгого времени. После того, как машина полностью остановится, нужно перевести селекторный рычаг в режим «N», поставить на стоячий тормоз, заглушить двигатель. Во время непродолжительных остановок перевод рычага в указанный режим не является обязательным. Допускается оставаться на режиме «А», однако при этом нельзя забывать, что во время остановки сцепление остается выжатым. А потому, при стоянии на светофоре или в автомобильном заторе, если выстаивание растягивается на неопределенный срок, нужно переключаться на нейтральный режим.

Какие режимы еще существуют?

Выше перечислены основные правила, которые следует соблюдать, управляя машиной с роботизированной коробкой. Однако, есть и иные особенности, о которых следует знать. Например, некоторые изделия предполагают вспомогательные режимы, а не только те, что были перечислены выше. Это такие виды передач как: спортивный и зимний (его еще называют «снежинкой»). Последний из представленных режимов нужен для того, чтобы безопасно перемещаться по трассе, покрытой льдом. Он обеспечивает плавный переход на более высокие скорости.

В мире существует несколько автомобильных трансмиссий. Наиболее популярными являются механическая коробка передач и автомат. На данный момент многие популярные производители стали использовать в своих новинках роботизированный вариант. В статье рассмотрим, что это такое — коробка передач робот, какие она получает отзывы и имеет ли преимущества и недостатки.

Характеристика коробки

Коробка передач робот является, по сути, механической, просто в нее дополнительно встроено автоматическое сцепление и переключение передач. Соответственно, работа трансмиссии полностью зависит не от водителя, как в других вариантах, а от электронного управляемого блока. Водителю лишь остается правильно передавать входящую информацию для корректной работы трансмиссии.

Устройство

Какая коробка передач лучше, автомат или робот, мы рассмотрим чуть позже, для начала нам нужно узнать устройство нового изобретения. Автоматизированная коробка передач получила сцепление фрикционного типа. Таковым является пакет дисков,ъ либо же встроенный отдельный механизм. Наиболее надежной и долговечной можно назвать конструкцию, которая получила двойное сцепление. Volkswagen Golf стал первым в мире автомобилем, который был оснащен роботизированной коробкой передач. Отзывы о работе устройства были довольно хорошими, все отмечали неплохую реакцию со стороны электроники, а также идеальную функциональность при разгоне. При этом поток мощности не разрывался. Это достигается при помощи использования двойного сцепления. При этом переключение скоростей занимает не более 1 секунды. При работе на российских дорогах, к сожалению, срок эксплуатации подобной коробки передач сокращается как минимум вдвое.

Особенности

Привод сцепления может быть электрическим, гидравлическим. В первом случае следует отметить наличие электродвигателя и механической передачи. Второй же тип привода работает за счет функционирования специальных цилиндров, которые управляются клапаном электромагнитного типа. В некоторых случаях коробка передач робот, вариатор которой хорошо устроен, комплектуется с электродвигателем. Он перемещает цилиндры, а также рассчитан на поддержание работы гидромеханического блока. Подобный прибор, который имеет привод такого типа, отличается длительностью скорости переключения передач. Как правило, она варьируется в пределах от 0,3 до 0,5 секунды. Однако если сравнивать с гидравлическими аналогами, то в системе не будет нужно постоянно поддерживать определенный давление. Ярким примером подобного автомобиля является «Опель», коробка передач робот на этой машине в целом радует многих водителей.

Гидравлические коробки передач получили быстрый цикл, который обеспечивает переключение передач за время от 0,05 до 0,06 секунды. Именно поэтому чаще всего такая трансмиссия применяется на гоночных машинах и суперкарах. Примерами служат Ferrari и Lamborghini. На машинах, которые относятся к бюджетному классу, такую коробку передач нельзя поставить на СТО даже в качестве дополнительной опции.

Как работает КПП робот?

Большая часть механизмов регулируется специальными интеллектуальными блоками коробки передач робот. Что это такое? Благодаря этому, то есть работе электронной системы, можно отслеживать все необходимые параметры для коробки передач. Также датчики анализируют положение трансмиссии, давление масла и других параметров для передачи в основной блок. После этого электроника сформирует все необходимые действия, которые следует выполнить. В виде коротких сигналов они будут поступать на электропривод и электроклапаны, соответственно, это позволит быстро, но плавно переключать коробку передач.

Режимы работы

Конструкция вариатора автомата и коробка передач робот для многих остается непонятной. Данное устройство работает на принципах механики. Однако при желании пользователя его можно переключать на автоматизацию. После того как человек перейдет в соответствующий режим, электронный блок будет заблокирован. Последний сам станет анализировать алгоритм работы. Водителю нужно лишь нажимать на педаль газа и следить за тем, что происходит на дороге. Довольно часто в пробках, судя по отзывам, коробка передач робот становится незаменимой. Если режим ручной, то водителю будет позволено самостоятельно переключать передачи с пониженной на повышенную, и наоборот. Управление можно осуществлять при помощи обычного рычага коробки передач.

Актуальность коробки в России

К сожалению, отечественные производители практически не используют для создания автомобилей коробку передач робот. Что это такое, не знают многие водители. Однако 2015 году было заявлено, что автомобили от ВАЗ, которые относятся к серии Priora, будут оснащаться роботом. Такая коробка весит около 35 кг, причем она полностью адаптирована под российские дороги и погодные условия. Например, если старая коробка автомат не давала возможности запустить машину при температуре ниже 25 градусов, то робот может показывать хорошую работу, даже если эта отметка опустится до -40. Гарантийный срок на роботизированную коробку составляет 3 года, однако производитель заявил, что средний период эксплуатации — 10 лет. Именно таким образом компания хотела добиться возвращения популярности для машин серии Priora.

Преимущества

Отзывы коробка передач робот заслужила весьма хорошие. Рассмотрим ее основные преимущества. Многие заявляют, что это удобно, когда коробка передач имеет все плюсы автомата и механики. Соответственно, человек, работая с машиной, может получать впечатления от действия автоматической коробки передач. Но одновременно с этим ему не стоит беспокоиться, что будет потрачено слишком много топлива.

Главное преимущество такой коробки передач — экономичность. Как заявляют пользователи, конструкция получила программное обеспечение, которое рационально определяет крутящий момент. И если сравнивать с обычным человеком, электроника не нервничает, не устает, не впадает в депрессию, не влияет на нее физическая нагрузка. Именно поэтому на мировом рынке роботизированная коробка передач получила огромное распространение.

На данный момент такая трансмиссия комплектуется в автомобилях классов A, B, C. Следует отметить, что «Тойота Королла» коробку передач робот тоже получила. Еще данное устройство устанавливается на немецкой машине Volkswagen Amarok. Причем этого «немца» можно купить в такой комплектации как на российском, так и на европейском рынке.

Однако это не исчерпывающий список плюсов, имеется еще несколько. Судя по отзывам, данная трансмиссия высоконадежная. Замена механизмов потребуется только после совершения пробега в 250 тыс. км. Зачастую ремонту подлежит сцепление, которое не очень хорошо переносит тяжелые нагрузки, особенно если идет речь о езде на труднопроходимых участках. Стоимость роботизированной коробки намного меньше, чем стандартного автомата. Более того, очень неприхотлива в обслуживании коробка передач робот. Масло — это единственное, что обязательно необходимо менять через каждые 60 тыс. км пробега.

Особенности веса

Вес коробки — довольно важный вопрос. По данному параметру трансмиссия показывает себя лучше, чем автомат, так как она значительно легче. Снаряженная масса такой коробки для легковых автомобилей будет не более 50 кг, в то время как вес автомата только начинается с этой отметки и достигает 100 кг в максимальных позициях. Соответственно, с роботом машина будет более легкой, то есть амортизаторы, колеса и двигатель не испытывают сильной нагрузки.

Недостатки

Что такое коробка автомат робот, мы уже рассмотрели, также обсудили преимущества машины, работающей на таком устройстве. Однако оно имеет и свои недостатки. Следует узнать, какие. Например, главным минусом считается скорость переключения передач. Из-за этого на машину может совершаться сильное давление, особенно если человек стоит в пробке. Зачастую автомобиль разгоняется при помощи рывков, что больше подходит для спортивной езды. Именно поэтому для всех любителей спокойного вождения производители такой коробки передач устанавливают специальный режим. И если с данной проблемой можно справиться, то безопасность езды по склонам на таком автомобиле является довольно актуальным вопросом.

Роботизированная коробка не получает постоянные сигналы от двигателя. Именно поэтому нередко она может отключиться, соответственно, машина будет со склона катиться вниз. Но, к счастью, судя по отзывам, мало кто попадал в такую ситуацию. В целом, учитывая все негативные стороны, данную коробку все равно можно назвать одной из самых лучших.

Сегодня автомобили с роботизированной коробкой передач ( , ) составляют серьезную конкуренцию классическому и по целому ряду причин. Прежде всего, коробка робот дешевле в производстве, также РКПП позволяет обеспечить высокую топливную экономичность, что особенно актуально с учетом жестких экологических норм и стандартов.

При этом на первый взгляд может показаться, что , однако это не так. С учетом определенных особенностей и конструктивных отличий, необходимо знать, как пользоваться коробкой робот, чтобы добиться максимального комфорта при езде и продлить срок службы агрегата.

Читайте в этой статье

Как правильно пользоваться роботизированной коробкой передач

Прежде всего, роботизированная КПП фактически представляет собой , в которой управление , а также выбор и включение/выключение передач осуществляется автоматически. Другими словами, коробка робот это все та же «механика», только передачи переключаются без участия водителя.

Еще отметим, что роботизированная трансмиссия также имеет ручной (полуавтоматический) режим, то есть водитель может самостоятельно повышать и понижать передачу аналогично Типтроник на АКПП. Становится понятно, что производители РКПП стремятся имитировать классический автомат для упрощения взаимодействия. По этой причине робот имеет похожие режимы.

  • Как и на АКПП, имеется режим «N» (нейтраль). В этом режиме крутящий момент на колеса не передается. Указанный режим нужно включать при простое с заведенным двигателем, в том случае, если выполняется буксировка авто и т.д. Режим «R» (реверс) означает движение назад.
  • Также коробка робот имеет режимы А/М или Е/М, что является аналогом режима D (драйв) для движения вперед. Такое обозначение свойственно простым «однодисковым» РКПП, то есть коробка имеет только одно сцепление. При этом следует отметить, что роботизированные коробки передач с двойным сцеплением (например, DSG) имеют режим, обозначенный литерой D (драйв), как и на обычных АКПП.
  • Что касается режима М, это значит, что коробка переведена в режим ручного управления (аналогично Типтроник), а обозначения «+» и «-» указывают, куда нужно двигать селектор для повышения или понижения передачи. Еще добавим, что на коробках типа DSG управление ручным режимом может быть выполнено в виде отдельной кнопки на селекторе.

Эксплуатация роботизированной коробки передач: нюансы

Итак, если в автомобиле стоит роботизированная коробка автомат (робот), как пользоваться такой КПП, мы рассмотрим ниже. Казалось бы, данная коробка похожа на АКПП по принципу работы и не сильно отличается от аналога. Другими словами, нужно только перевести селектор в то или иное положение, после чего автомобиль начнет движение, причем дальнейшая езда будет похожа на машину с классической АКПП.

Сразу отметим, РКПП сильно отличается от автомата с . По этой причине нужно знать, как управлять коробкой робот, а также правильно эксплуатировать такую КПП.

  • Начнем с прогрева, то есть нужно ли прогревать коробку робот зимой. Как известно, для , так как трансмиссионное масло (жидкость ATF) должно немного разжижиться. При этом для роботизированной коробки требования менее жесткие.

Если просто, однодисковый робот нужно греть точно так же, как и обычную механику. Что касается DSG, особенно с «мокрым» сцеплением, прогреть такую РКПП необходимо чуть дольше, так как в ней залит большой объем трансмиссионной жидкости.

В любом случае, как для МКПП, так и для РКПП независимо от типа, общие правила похожи. Важно понимать, что за время простоя масло в коробке стекает и густеет при низких температурах. Это значит, что двигатель должен поработать определенное время на холостых, чтобы , а также масло успело растечься по полостям коробки передач.

При этом, в отличие от АКПП, селектор в разные режимы переводить не нужно, то есть достаточно включить нейтраль N. Дальнейшее движение должно быть в щадящем режиме, без резких стартов, на невысокой скорости. Помните, масло в коробке греется намного дольше, чем в двигателе. Чтобы трансмиссионная жидкость полностью прогрелась и вышла на рабочие температуры, необходимо проехать, в среднем, около 10 км.

  • Езда на подъемах и спусках с коробкой робот также является моментом, который заслуживает отдельного внимания. Существует много моделей с РКПП (как правило, в бюджетном сегменте), которые не имеют системы помощи при старте на подъем.

Это означает, что трогаться на подъем с роботизированной коробкой нужно точно так же, как и на механике. Простыми словами, потребуется использовать ручник (стояночный тормоз). Сначала следует затянуть ручник, затем включается режим A, после этого водитель нажимает на педаль газа и параллельно снимает машину с ручника. Указанные действия позволяют тронуться в гору без отката.

Кстати, в этом случае также можно пользоваться не только автоматическим, но и ручным режимом, включая первую передачу. Единственное, не следует сильно давить на газ, так как возможна пробуксовка колес. Еще добавим, что алгоритм работы РКПП предполагает, что такая коробка не позволяет двигаться в натяг, то есть на подъеме нужно повышать обороты двигателя.

Что касается спусков, в этом случае отпадает необходимость каких-либо дополнительных действий. Водитель просто переводит селектор в режим A или D, отключает стояночный тормоз и начинает движение. При езде под уклон будет проявляться .

  • Остановка на светофоре, движение в пробке и длительная стоянка. Сразу начнем с кратковременных остановок и пробок. Прежде всего, если стоянка короткая (около 30-60 сек.), например, на светофоре, нет необходимости переводить селектор из режима А или D в N. Однако более длительный простой все же потребует перехода на нейтраль.

Дело в том, что когда на роботе включен режим «драйв» и водитель останавливает автомобиль при помощи тормоза, сцепление остается выжатым. Становится понятно, что если машина находится в пробке или подолгу стоит на светофоре, нужно переключаться на «нейтралку», чтобы уберечь сцепление и продлить срок службы данного узла.

Что касается парковки или стоянки, после того, как автомобиль полностью остановлен, селектор РКПП переводится из режима A в N, затем затягивается ручник, после чего можно отпустить педаль тормоза и глушить двигатель автомобиля.

  • Дополнительные режимы коробки робот. Следует отметить, что роботизированная коробка также может иметь такие режимы как S (спортивный) или W (winter, зимний), причем последний часто обозначается в виде «снежинки».

Не вдаваясь в подробности, в зимнем режиме коробка передает на колеса «мягко», чтобы избежать пробуксовок на заснеженной дороге или на льду. Как правило, автомобиль в этом режиме трогается с места на второй передаче, а также плавно переходит на повышенные. В спорт режиме коробка робот переходит на повышенные передачи на высоких оборотах, что улучшает приемистость и разгонную динамику. При этом расход топлива также увеличивается.

Еще добавим, что во время езды роботизированная коробка позволяет переключаться из автоматического режима в ручной и обратно. Это значит, что водитель может прямо на ходу повышать и понижать передачи. Однако получить полный контроль над работой КПП не получится, так как режим полуавтоматический.

Такая особенность является «защитой», так как понижение передач на две ступени вниз может привести к тому, что обороты двигателя «упрутся» , момент переключения будет сопровождаться ударом, сильной нагрузкой на трансмиссию и т.д. Другим словами, включение той или иной передачи возможно только в том случае, если диапазон допустимых оборотов и скорость ТС, прописанные в , позволяют включить выбранную водителем передачу.

Как правило, водители, которые ранее эксплуатировали автомобили с классической АКПП, отмечают определенные особенности и отличия простых роботизированных коробок с одним сцеплением.

Данная коробка (однодисковый робот), может «затягивать» включение передач, отличается «задумчивостью» при понижении или повышении передачи и т.п. Также РКПП может работать не совсем корректно при резких нажатиях на акселератор и больше подходит для спокойной езды.

Чтобы резко ускориться, оптимально перейти в ручной режим, а также нажимать на газ плавно, чтобы минимизировать задержки и провалы. Что касается торможения двигателем, данный эффект вполне приемлемо реализован в автоматическом режиме.

Также для РКПП характерны легкие толчки при переключении передач. Все дело в том, что толчок появляется в момент, когда сцепление «смыкается». Избежать таких толчков можно, интуитивно угадывая, когда электроника инициирует переключения, и немного сбрасывая газ перед таким переключением.

Еще добавим, что сходство с механикой и наличие ручного режима все равно не означает, что на машине с роботом можно активно буксовать. Дело в том, что если на МКПП водитель «подпаливает» сцепление, далее износ узла и момент включения/выключения компенсируется изменением хода педали сцепления, также сам водитель чувствует момент включения и выключения механизма и т.д.

В случае с роботом, электроника попросту не «умеет» учитывать такой износ, что приводит к отклонению от запрограммированной точки схватывания, то есть происходит нарушение калибровки точно настроенных исполнительных механизмов. По этой причине один раз в 10-15 тыс. км необходимо выполнять инициализацию (обучение) коробки робот, так как игнорирование данного правила может привести к тому, что .

Что в итоге

С учетом приведенной выше информации становится понятно, что среди всех роботизированных коробок оптимальным вариантом можно считать преселективный робот с двумя сцеплениями (например, ).

Данные коробки передач лишены многих недостатков однодисковых РКПП, а также обеспечивают максимум комфорта и высокую топливную экономичность. Также следует отметить, что робот с двойным «мокрым» сцеплением при грамотном обслуживании и эксплуатации имеет больший срок службы по сравнению с аналогами

Что касается езды, в большей степени отличия РКПП от АКПП проявляются именно в случае с однодисковыми роботизированными коробками передач. Если автомобиль оснащен такой коробкой, перед началом активной эксплуатации рекомендуется отдельно изучить особенности работы трансмиссии данного типа на практике.

Напоследок отметим, что в случае с DSG и аналогами, особенно если ТС имеет систему помощи при старте на подъеме, особой разницы между АКПП и РКПП водитель не заметит. Основной рекомендацией в этом случае остается только необходимость переводить коробку из «драйва» в «нейтраль» при простоях больше 1-2 минут.

Читайте также

Коробка передач DSG (ДСГ): конструкция, принцип работы, отличительные особенности. Надежность, ресурс DSG, виды роботизированных коробок DSG, советы.

  • Коробка передач АМТ: устройство и работа роботизированной коробки передач, виды коробок-робот. Преимущества и недостатки роботизированной трансмиссии.
  • Как пользоваться коробкой роботом: правила вождения и эксплуатации

    На легковых автомобилях используют несколько видов ступенчатых трансмиссий, предусматривающих переключение передач в ручном или автоматическом режиме. На части автомашин встречается роботизированная коробка, созданная на базе механической, но с автоматическим переключением скоростей и управлением сцеплением. Водителю необходимо знать, как ездить на роботе, поскольку от правильной эксплуатации зависит ресурс сцепления и механической части коробки скоростей.

    Роботизированная коробка передач достаточно популярна в наше время. 

    Устройство роботизированной КПП

    Роботизированная коробка представляет собой механическую ступенчатую трансмиссию, дополненную электронным блоком управления. Управление муфтой сцепления и переключение скоростей производится исполнительными сервоприводами (электрическими или гидравлическими). Для начала движения водителю необходимо поставить селектор в положение A (перемещение вперед) или R (движение назад), а затем отпустить педаль тормоза.

    Блок управления переключает скорости в зависимости от частоты вращения коленчатого вала и сопротивления движению. В конструкции контроллера предусмотрен специальный датчик, фиксирующий угол наклона автомашины. В зависимости от положения автомобиля корректируется работа роботизированной коробки.

    В конструкции коробки предусмотрен режим ручного переключения, обозначаемый литерой M. Для выбора скорости необходимо нажимать на селектор вперед или назад, повышая или понижая передачу. Электронный контроллер отслеживает режим работы двигателя и скорость движения, в памяти устройства зашиты допустимые соотношения скоростей и оборотов силового агрегата. Например, блок не допустит попытки тронуться с 3-й передачи или перекрутить коленчатый вал мотора ошибочным включением пониженного передаточного отношения при движении на трассе.

    Обслуживание роботизированной коробки заключается в проведении компьютерной диагностики, позволяющей определить остаточную толщину фрикционных накладок сцепления. При неаккуратном обращении с трансмиссией происходит ускоренный износ накладок муфты сцепления. Изменение размерных цепей негативно влияет на работу исполнительных механизмов, проходящих калибровку в заводских условиях.

    При проведении ежегодного обслуживания автомашины или через каждые 10-15 тыс. км выполняется адаптация конструкции, позволяющая компенсировать износ накладок. Пренебрежение процедурой адаптации приводит к некорректной работе агрегата и его переходу в аварийный режим. В механической части трансмиссии производится замена масла на жидкость, рекомендованную изготовителем. Периодичность обслуживания агрегата зависит от производителя, рекомендации приведены в сервисной книжке автомобиля.

    Роботизированная коробка передач выбирать и включать необходимую передачу без участия водителя.

    Как ездить на коробке робот

    Роботизированная коробка предназначена для спокойного движения, резко нажимать на педаль газа не следует даже при активации спортивного режима.

    Для обеспечения динамичного разгона рекомендуют перевести селектор в режим ручного управления и плавно ускоряться на каждой передаче. При замедлении необходимо вернуть рычаг в положение автоматического выбора передачи. Допускается буксировать автомобиль с роботом в случае поломки силовой установки или узлов подачи топлива. При поломке трансмиссии рекомендуют перемещать автомашину на эвакуаторе.

    При переключении скоростей на роботе происходит толчок, что не является проблемой или признаком неисправности. Для уменьшения эффекта можно отслеживать моменты переключения и снижать обороты двигателя. Если машина застряла в грязи или снежной каше, допускается раскачивание автомобиля путем переключения коробки из режима А в режим R. Но длительное буксование приводит к нарушению работы исполнительных механизмов. Для восстановления работоспособности требуется выполнить компьютерную калибровку сервоприводов.

    Особенности вождения с роботизированной коробкой

    Поскольку робот является компромиссным вариантом конструкции, следует учитывать некоторые особенности управления автомобилем. Например, роботизированный агрегат не всегда корректно переключает скорости, что приводит к падению интенсивности разгона. При резком нажатии на педаль газа передачи переключаются вниз с запаздыванием. Эту особенность следует учитывать при совершении обгона на трассе, особенно с выездом на полосу встречного движения.

    Требуется ли прогрев

    Роботизированная коробка не требует прогрева масла. После запуска двигателя рекомендуют постоять 20-60 секунд, пока шестерни не разбросают смазывающее вещество по поверхностям трения. Прогревать машину зимой необходимо на протяжении нескольких минут, до момента стабилизации оборотов двигателя. Затем можно пользоваться автомобилем. Селектор переводится в позицию А.

    При прогреве двигателя не требуется устанавливать селектор коробки в различные положения по аналогии с гидромеханическими агрегатами. После начала движения рекомендуют проехать 1-2 км на пониженной скорости, чтобы снизить нагрузки на трущиеся поверхности. Поскольку картер коробки находится на удалении от силового агрегата, нагрев масла в трансмиссии происходит через 10-15 км пути.

    Начало движения на подъем его преодоление спуск

    В конструкции роботизированных агрегатов не используется ассистент старта в гору. Исключение составляют некоторые марки автомобилей.

    Чтобы начать двигаться в гору на автомашине с коробкой робот, необходимо перевести рычаг в положение A, одновременно удерживая автомобиль стояночной тормозной системой. Затем водитель отпускает рычаг тормоза и увеличивает частоту вращения двигателя.

    Для снижения отката автомашины водителю необходимо поймать момент включения сцепления и одновременно отпустить рычаг ручного тормоза. Перед началом эксплуатации автомобиля рекомендуют выполнить несколько пробных попыток старта на горке, чтобы понять момент начала работы сцепления. В зимнее время коробка переключается в режим ручного выбора ступени, что снижает пробуксовку в начале движения. После разгона скорости переключаются принудительно или селектор переводится в положение автоматической работы.

    При увеличении скорости коробка будет повышать передачи, но если частота вращения мотора упадет, трансмиссия перейдет на пониженную скорость в автоматическом режиме. При движении на спусках рычаг остается в положении А, педаль газа отпускается для торможения двигателем.

    Для дополнительного снижения скорости производится нажатие на педаль тормоза. Переключать селектор трансмиссии в нейтральное положение не требуется.

    Остановка и парковка

    Автомобиль с роботизированным агрегатом останавливается при помощи штатных тормозов. Затем водитель устанавливает рычаг коробки в нейтральное положение и включает стояночный тормоз. Педаль тормоза отпускается, водитель может заглушить двигатель и вынуть ключ из замка. При остановках, например, на светофоре, допускается оставлять селектор в положении движения вперед. При длительной стоянке необходимо перевести рычаг в нейтральную позицию, поскольку в выжатом положении сцепление изнашивается.

    Другие режимы

    Роботизированные коробки передач поддерживают дополнительные режимы работы:

    1. Режим, обозначаемый пиктограммой в виде снежинки, предназначен для передвижения в зимнее время. Контроллер коробки обеспечивает старт со второй передачи и меняет алгоритм переключения скоростей, снижая пробуксовку колес на скользком дорожном покрытии.
    2. Функция «спорт» позволяет переключать передачи при повышенной частоте вращения коленчатого вала, что обеспечивает динамичный разгон.
    3. Ручной режим, позволяющий принудительно управлять коробкой передач.

    Эксплуатация роботизированной коробки передач в городских условиях

    Езда на автомобиле с роботизированной коробкой в городе требует переключения в нейтральное положение при остановках дольше 20-30 секунд.

    Если удерживать автомашину на тормозе, то сцепление находится в разомкнутом состоянии. Из-за этого изнашиваются детали привода фрикционной муфты, теряется эластичность пружинных элементов. Дополнительных требований к эксплуатации роботизированного узла нет.

    Как ездить на роботизированной коробке передач правильно

    Автолюбители, решившие приобрести автомобиль с роботизированной коробкой передач нередко, задаются вопросом, как ездить с такой системой? В статье мы рассмотрим, как пользоваться коробкой робот. Автоматическая роботизированная КПП, обиходное наименование коробка робот – это обычная МКПП, заключившая в себе компактный электронный блок, электронное управление сцеплением и автоматизированное переключение передач. Коробка робот сочетает в себе надежность, комфорт и топливную экономичность. Сегодня практически все автопроизводители оснащают свои машины такими коробками, у каждой из них есть своя уникальная конструкция и запатентованное название. Что самое интересное «робот» дешевле классической АКПП.

    Роботизированная коробка передач

    Об устройстве

    Одна из ветвей развития механических трансмиссий привела к созданию роботизированной КПП, которая соединила в себе надежность «механики» с удобством «автомата». За счет того, что вся работа водителя стала выполняться актуаторами – сервоприводами блока, возросли характеристики. Теперь электронный блок сам заботится о переключении передач. Все что нужно от человека — это устанавливать селектор в нужное положение, как в КПП и наслаждается поездкой.

    Есть роботы с режимом ручного переключения передач. Например, коробка 2-Tronic может служить в трех режимах. Первый – автомат, когда человек, вообще не трогает передачи. Второй – полумеханика, на случай если водитель захочет самостоятельно управлять сцеплением, например, при обгоне другого авто и в то же время находится в автоматическом режиме. Третий режим – полностью ручной, где все зависит только от водителя.

    Что касается любителей быстрой езды, то для них в самый раз подойдет кулачковая роботизированная коробка передач. Она самая быстрая из всех видов роботизированных коробок, переключать скорости можно за 0,15 секунд. Машины, имеющие такую коробку, содержат педаль сцепления, но применяется она лишь когда транспортное средство трогается с места. Далее, переключение происходит как в спортивном мотоцикле – не используя сцепление.

    Преселективная коробка переключения передач

    РКПП могут иметь электрический или гидравлический привод сцепления. В первом варианте «органами» выступают сервомеханизмы (электродвигатели). Что касается гидравлического, то здесь все основывается на гидроцилиндрах. Гидравлическим приводом оснащают свои роботизированные коробки такие автопроизводители, как: Peugeot, Fiat, Renault, BMW, Volkswagen, Citroen и другие. Что касается электрического привода, то с ним работают компании: Ford, Opel, Nissan, Toyota, Mitsubishi. Остальные компании корейских производителей пока не решаются вводить роботов, из-за сложности конструкции и обслуживания.

    Принцип работы роботизированной коробки передач

    РКПП имеет тот же принцип действия, что и механическая трансмиссия. У нее имеются такие же три вала: ведомый, промежуточный и ведущий, те же шестерни и передаточные числа. Как было упомянуто выше, роботами управляют сервоприводы, иначе как актуаторы. Эти устройства вводят и выводят из зацепления шестерни валов, а также соединяют и разъединяют коробку с маховиком двигателя. Контроль над процессом взял на себя электронный блок, посылающий команды на гидравлический привод или электродвигатель. На основании сигналов входных датчиков блок формирует алгоритм, управления зависящий от внешних условий, и реализует его через исполнительные механизмы. Все что остается водителю это переключать лепестковым селектором передачи.

    Автоматическая коробка передач с гидротрансформатором

    Роботизированные КПП с двойным сцеплением

    Так как в первых коробках роботах время переключения сцепления медленное (до 2 с), приводящее к зависаниям и толчкам в динамике, было решено устранить проблему при помощи создания роботизированной коробки передач с двойным сцеплением, которая переводит скорости без разрыва потока мощности. Технология возникла еще в конце 80-х годов прошлого века. Суть в том, что два сцепления работают попеременно, а не сразу оба. Вместе с двойным сцеплением преселективные коробки содержат еще два первичных вала.

    Алгоритм таков — пока действует первая передача, сигнал о запуске поступает к второй. Таким образом, крутящий момент переходит сначала на ведущий вал, пока последующая – ждет своей очереди, будучи уже включенной через второй первичный вал, но еще разъединенной с ведущим валом. Так, время переключения сводится к минимуму, что нельзя сделать на МКПП при ручном управлении. Благодаря устройству работы двух сцеплений, езда на транспортном средстве получается плавной и мягкой, однако, в конструктивном плане такой аппарат достаточно сложен и его обслуживание может обойтись дорого. Наблюдать подобное техническое решение, возможно на коробках DSG, S-Tronic, SMG и DCT M Drivelogic, идущие, как правило, на спортивных авто фирмы BMW.

    РКПП

    Нужен ли прогрев коробки?

    Переходим к рассмотрению вопроса как ездить на роботе в особенностях эксплуатации. Многих волнует, требуется ли прогревать РКПП зимой? По сути, робот не нуждается в прогреве, но ну думаем это лишним, не будет. Потому что во время застоя масло в коробке стекает вниз и под действием мороза густеет. Чтобы его прогреть для нормального функционирования следует просто постоять несколько минут с заведенным двигателем, в это время селектор переводить не требуется. Затем трогаться с места стоит плавно, двигаясь равномерно без рывков с минимальными оборотами необходимо проехать где-то километр.

    Летом, чтобы масло растеклось по системе, будет достаточно и одной минуты. Если не прогревать машину, то масло может плохо смазать подшипник, а это вызовет неполное сведение диска, корзины и трение с последующим перегревом.

    Несколько полезных советов:

    • в зимнее время года также не следует буксовать – это приведет к декалибровке исполнительной системы;
    • не попадайте в снежные засады, можно застрять;
    • берите шипованную резину, потому что липучки вас подведут;
    • оставляйте ночевать авто на скорости «Е» с выключенным двигателем;
    • если покрытие дорожного полотна плохое, трогайтесь не газуя со второй передачи. E->M и «+».

      Устройство Роботизированной коробки передач (РКПП)

    Начало движения на подъем, его преодоление, спуск

    Некоторые машины с РКПП не оснащены функцией помощи старта на подъем, по этой причине необходимо самому научится правильно двигаться в таких ситуациях. С коробкой роботом нужно вести себя точно так же как и с МКПП. Ставим селектор в режим «А» и медленно давим на акселератор, попутно убирая машину с ручника. Это поможет автомобилю не скатиться назад. Перед этим желательно потренироваться, чтобы прочувствовать и понимать, в какой момент сцепление начало включаться и можно снимать с ручника.

    Если на гору нужно подниматься зимой, то лучше переключится на ручное управление установив первую передачу или режим «М1», Помните, что давление на газ должно быть максимальным, это не вызовет пробуксовки. Когда в машине имеется гироскоп, на подъёме взят автоматический режим, то коробка начнет сама переключаться на нужные передачи. Робот сам определяет положение и начинает перещелкивать скорости — в основном на пониженные. В зависимости от ситуации можно перевести рычаг в режим «М» и зафиксировать текущую скорость. Когда скорость вас не устраивает можно выбрать необходимую, при этом не следует опускать обороты ниже 2500 и превышать 5000. Во время спуска делать ничего не нужно, будет достаточно просто перевести селектор в режим «А» и убрать с ручника.

    Схема работы РКПП

    Городские условия/остановка, парковка

    Есть мнения, что коробка робот меньше уживается в условиях города с пробками, и это сокращает ее срок службы. Совет: после полной остановки машины, селектор необходимо выставить в режим «N» нейтраль, поставить на ручник и далее выключить мотор. Если остановки кратковременные, то переводить селектор в режим нейтраль не нужно, находитесь на положении «А». Так как при остановке сцепление остается выжатым, то при пробках или светофорах с задержкой больше минуты лучше двигатель глушить.

    Другие режимы

    Существуют дополнительные приложения систем, помимо рассмотренных основных. Так, некоторые роботизированные коробки оснащены положением – спорт и зимний, иное название «снежинка». Режим «Снежинка» нужен для создания плавного хода на скользком пути. Она обеспечивает движение, со второй передачи переводя плавно на повышенную скорость.
    Положение «спорт» создает переход на повышенные передачи при больших оборотах, что дает возможность быстрого ускорения.

    Машина с коробкой роботом

    Общие рекомендации

    Как ездить на роботизированной коробке передач правильно мы рассмотрели, теперь дадим несколько практических советов:

    1. На старте не следует выжимать газ, когда необходимо прибавить скорость педаль нужно жать уверенно, но плавно.
    2. Лучше проводить инициализацию в сервисном центре несколько раз за год – это сведет к минимуму дерганья и рывки.
    3. Во время ускорения руководствуйтесь логикой МКПП.

    Интересное по теме:

    загрузка…

    Facebook

    Twitter

    Вконтакте

    Одноклассники

    Google+

    устройство и принцип работы. Советы по выбору.

     

    Коробка робот похожа на механическую. Единственным отличием от механики является то, что в коробке робот передачи переключает некий исполнительный механизм (робот). Есть два типа исполнительных механизмов:

    • • Гидравлический привод;
    • • Электрический привод.

     

    Классическая роботизированная коробка передач была сконструирована в 60-х годах 20 века. Основным ее недостатком является большое время переключения передач, что приводит к толчкам и провалам в динамике автомобиля. Для того чтобы сократить время переключения передач, была разработана коробка с двумя сцеплениями. Стоит отметить, что роботизированная коробка передач с двойным сцеплением является самой распространенной на рынке. Например, всем известная коробка DSG от Фольсксваген является роботизированной коробкой передач с двумя сцеплениями.

    Такую коробку можно условно представить состоящей из двух коробок (см. рисунок). Каждая из них со своим сцеплением. Одна коробка передач отвечает за нечетные передачи, вторая – за четные. Коробки существует независимо от друг друга.

    Давайте рассмотрим процесс переключения передач. Предположим, вы едете на первой передаче. В то время как вы едете на первой, датчики управления сообщают коробке, что происходит разгон автомобиля и заранее включается вторая передача. Т.е. в момент, когда необходимо включить вторую передачу, она уже включена заранее. И коробка просто выключает первую передачу.

    Для наглядности давайте рассмотри процесс переключения передач на классической механике.

    1. 1. Выжимаете сцепление;
    2. 2. Выключаете передачу;
    3. 3. Включаете передачу;
    4. 4. Отпускаете сцепление.

     

    В коробке робот необходимо выполнить всего два действия:

    1. 1. Выключить сцепление 1
    2. 2. Включить сцепление 2.

     

    Получается, что в механической коробке передач необходимо выполнить на два действия больше, чем в роботизированной. Поэтому роботизированная коробка передач быстрее переключает передачи, что сказывается на динамике автомобиля, а также на расходе топлива.

    Выводы: Современные роботизированные коробки передач имеют два сцепления. Каждое из которых, отвечает за свои передачи. Эти передачи включаются заблаговременно, а в момент непосредственного переключения управление коробкой просто включает или выключает требуемое сцепление.

    На рынке существует два вида сцепления:

    • • Сухого типа. Для автомобилей с малой мощностью. Недостаток коробок со сцеплением сухого типа – малый ресурс.
    • • Мокрого типа. Для автомобилей повышенной мощности. Работают с использованием масла и рассчитаны на более продолжительный срок службы.

     

    Коробка-робот по сравнению с автоматической коробкой передач имеет несколько преимуществ:

    • • Низкий расход топлива;
    • • Лучшая динамика автомобиля;
    • • Стоимость.

     

    К недостаткам можно отнести:

    • • низкий ресурс
    • • недостаток квалифицированного ремонта роботизированных коробок передач в СНГ.

     

    Если вы спросите, с какой же коробкой нужно покупать автомобиль? Если рассматривайте покупку нового авто, то мы однозначно рекомендуем коробку робот. Однако если вы покупаете бэушный авто с пробегом более 200 тыс., то здесь лучше рассматривать вариант покупки либо механики, либо автоматической акпп.

     

     

     

    Коробка передач. Сравнение трансмиссий, плюсы и минусы

    Что такое коробка передач (трансмиссия) и для чего она нужна.

                    Коробка переключения передач является неотъемлемой частью любого автомобиля с двигателем внутреннего сгорания. Назначение коробки передач — это передача и преобразование крутящего момента с двигателя на колеса, а так же осуществление отбора мощности на привода других агрегатов и дополнительного оборудования. Этот процесс позволяет обеспечить оптимальную силу тяги и скорость движения автомобиля, а так же движение задним ходом. Более того коробка помогает разъединять коленчатый вал двигателя от ведущих колес, что обеспечивает холостой ход автомобиля или его полную остановку.

    Нужно отметить, что коробки передач получили распространение не только в транспортных средствах. Широко применяют коробки переключения в промышленных механизмах, станках на производстве.

    С момента появления автомобилей на дорогах производители совершенствовали не только двигатели, но и коробки переключения передач. Развитие данного направления привело к появлению современных автомобилей с разными видами трансмиссий.

    Виды трансмиссий

    Более чем столетняя история развития автомобилестроения принесла в современный мир не только экологичные и мощные двигатели, но и усовершенствованные коробки переключения передач. На сегодняшний день на автомобили устанавливаются четыре основных типа коробок переключения передач:

    1.       Механическая коробка переключения передач

    2.       Автоматическая коробка переключения передач

    3.       Роботизированная коробка переключения передач

    4.       Вариативная (бесступенчатая) коробка переключения передач

    Разберем подробнее каждый тип коробки.

    Механическая коробка передач (Механика, МКПП)

                    Особенность работы двигателя внутреннего сгорания в том, что рабочая мощность развивается только в небольшом диапазоне оборотов. По этой причине для изменения крутящего момента необходим дополнительный механизм.

    История создания уходит более чем на сто лет назад, а изобретение принадлежит Карлу Бенцу. Конструктивно, устройство первой коробки было примитивным и крайне простым. Механизм коробки был реализован из пары шкивов разного диаметра, которые были расположены на ведущем валу, шкивы соединялись с валом двигателя при помощи ремня. В зависимости от условий движения ремень при помощи специально предусмотренного рычага переставлялся с одного шкива на другой. Это позволяло изменять крутящий момент, передающийся на ведущие колеса. Такой простой механизм нашел применение и в современном мире, передачи на велосипедах переключаются по тому же принципу.

    Современные механические коробки значительно дальше шагнули от такого механизма. Конструктивно коробка состоит из набора шестерен, а изменение передаточного осуществляется путем введения шестерен в зацепление при помощи рычага.

    Механические КПП могут оснащаться разным количеством ступеней. Самой популярной является пятиступенчатая коробка. В свою очередь коробки переключения передач механического типа подразделяются на двухвальные и трехвальные коробки.

    Двухвальные механические коробки переключения передач устанавливаются на автомобили, оснащенные передним приводом. Трехвальные коробки переключения передач устанавливаются на легковые и грузовые автомобили, которые могут комплектоваться как передним так и задним приводом.

    Плюсы МКПП:

    ·      Простая и надежная конструкция

    ·      Более легкое управление автомобилем в условиях бездорожья

    ·      Движение в экономичном режиме

    ·      Недорогое обслуживание

    Минусы МКПП:

    ·      Неудобство управления в сложном городском режиме

    Автоматические коробки передач (Автомат, АКПП)

    Идея комфортного управления автомобилем родилась практически сразу с появлением самого автомобиля. Такой комфорт могло бы обеспечить автоматическое переключение передач. Но реализовать данную идею смогли не сразу. В серию, автомобили с автоматической коробкой переключения передач попали только в 1947 году, АКПП стали комплектовать автомобили фирмы Buick.

    Хотя на самом деле серийные автоматические коробки переключения передач появились немного раньше. АКПП оснащались городские автобусы в Швеции еще в 1928 году.

    Нужно отметить что, к появлению гидромеханической коробки передач привели три независимые линии разработок, позже которые были объединены в ее конструкции. В основу АКПП встал гидротрансформатор, изобретение профессора Феттингера, патент на который им был получен еще в 1903 году. Два других элемента — это планетарный редуктор и гидравлическая система управления.

    Современная автоматическая коробка переключения передач, в отличие от классической механики, работает в иных условиях и по другому принципу, хоть и основное назначение неизменно.

    Гидротрансформатор или преобразователь крутящего момента, включает в себя насос, турбину и статор. Все детали гидротрансформатора заключены в общем корпусе. Гидротрансформатор заполнен специальным маслом, насос создает внутри гидротрансформатора поток масла, который вращает колесо статора и турбину. Тем самым передавая крутящий момент с двигателя.

    Планетарная передача состоит из нескольких шестерен (они называются планетарными или сателлитами), вращающихся вокруг центральной шестерни. Планетарные шестерни фиксируются вместе с помощью водила. Кроме этого, дополнительная внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, внешняя шестерня – вокруг сателлитов. Передаточные отношения достигаются путем фиксации различных деталей относительно друг друга. Для получения большего диапазона передаточных чисел в современных коробках используется несколько планетарных передач.

    Гидравлика работает в полном симбиозе с остальными частями АКПП и ее работу можно сравнить с кровеносной системой. Жидкость, используемая в качестве рабочей, помимо создания давления в системе, обладает так же набором полезных функций. Таких как смазывание, отвод тепла и очищение внутренностей АКПП от загрязнений.

    Плюсы АКПП:

    ·         Комфорт и удобство управления

    ·         Способность менять передачи при полной мощности двигателя

    ·         Плавность хода во время переключения передач

    ·         Защита деталей двигателя от перегрузок при выборе неверной передачи

    Минусы АКПП:

    ·      Стоимость и периодичность обслуживания

    ·      Больший расход топлива

    ·      Низкий КПД

    ·      Меньшая динамика автомобиля

    Роботизированные коробки передач (Роботы)

    Роботизированная коробка передач — это логическое продолжение развития механической коробки. Робот это не что иное, как механическая КПП, в которой выжим сцепления и переключение передач выполняют два сервопривода (актуатора), управляемые электронным блоком. По факту робот впитал в себя все положительные стороны механической кпп и удобство автомата.

    Первый прототип робота появился в 1939 году, Адольф Кегресс создал трансмиссию с двойным сцеплением, но дальнейшее развитие этого перспективного изобретения остановилось на следующие 40 лет. Всему виной отсутствие финансирования проекта.

    В серию роботизированные коробки передач попали очень нескоро, но обкатать технологию решились инженеры Porsche. Роботы внедрили на модели 956 и 962С, машины предназначались для кольцевых гонок. К сожалению, недоработка конструкции и значительный вес коробки не позволил технологии выйти за пределы трека.

    Серийная роботизированная коробка появилась только в 2003 году. Отважилась на такой шаг компания Volkswagen, установив преселективную трансмиссию на спорт версию модели Golf 4 R32. Производителем коробки была компания BorgWarner. По сей день концерн VAG активно продвигает этот тип коробок на своих моделях.

    Особенность такой коробки заключается в конструкции, а именно в наличии двух сцеплений. Принцип работы такой коробки состоит в том, что на одно сцепление завязаны четные передачи, а на второе нечетные. В процессе движения крутящий момент передается по одному сцеплению, т.е. диск сомкнут. В это же время диск второго сцепления разомкнут, но внутри самой коробки следующая передача уже сформирована и когда приходит время переключения, первый диск просто размыкается, а второй синхронно смыкается. Такая схема работы обеспечивает плавность переключения и отсутствие рывков.

    В свою очередь, роботизированные коробки делятся на два типа:

    ·   С мокрым сцеплением — используют на автомобилях с мощным двигателем, крутящий момент которых превышает 350 Нм.

    ·   С сухим сцеплением – используют на автомобилях с маломощными двигателями до 250 Нм крутящего момента.

    Плюсы Робота:

    ·         Плавность переключения и хода

    ·         Высокий КПД

    ·         Экономичный расход топлива

    ·         Высокая динамика

    ·         Возможность выбора режима работы трансмиссии

    Минусы Робота:

    ·         Малая надежность, как самой конструкции, так и мехатроника

    ·         Стоимость обслуживания и ремонта

    ·         Чувствительность к тяжелым дорожным условиям

    Вариаторные трансмиссии (Вариаторы)

    Вариаторные трансмиссии (CVT) считаются прямыми последователями классических гидромеханических кпп. Есть устойчивое мнение, что за CVT – коробками будущее, опять таки, учитывая городскую эксплуатацию автомобилей. Особенный упор на трансмиссии CVT делают японские производители, такие как Nissan и Subaru. Первая вариаторная коробка серийно появилась на автомобиле марки DAF в 50-е годы XX-века. Этим автомобилем оказался не грузовик, как многие могли подумать, а маленький легковой автомобиль.

    К сожалению, особой надежностью и длительным ресурсом конструкция не отличалась. Компания Volvo в свою очередь, долгие годы пыталась развить технологию, но все закончилось сворачиванием разработок. Неожиданное продолжение истории вариатора дала Япония.

    Причиной возврата и доработки вариатора послужила необходимость адаптации автоматических коробок к условиям эксплуатации в режиме городских пробок. Работа переключений передач на АКПП напрямую завязана на обороты двигателя. Классический автомат в режиме городских пробок, на малом расстоянии и на малом ходу начинал переключать передачи с первую на вторую, когда этого совершенно не нужно. В другом случае, двигаясь «накатом», АКПП держала передачу, не уходя на пониженную, долгое время ожидая от водителя команды на разгон. Такое поведение коробки давало большую нагрузку на собственные узлы, что вело к увеличенному расходу топлива, повышенному износу и раннему выходу из строя. Все это привело к интенсивной доработке акпп, но результатом стал принципиально новый тип кпп – CVT.

    Самое удивительное, что первый вариатор был придуман Леонардо да Винчи в 1490 году. На чертежах изобретателя можно увидеть схему из параллельных конусов и перекинутого между ними ремня, способного перемещаться поперек оси вращения конусов, что позволяло менять передаточное отношение пары.

    Коробка типа CVT или Вариатор представляет собой бесступенчатую коробку передач. Основные детали коробки CVT — это гидротрансформатор и два раздвижных шкива, плюс, соединяющий их (шкивы) ремень. Сечение ремня имеет трапециедальную форму. Принцип работы заключается в следующем — сдвигающиеся половинки ведущего шкива выталкивают ремень наружу, что приводит к увеличению радиуса шкива, по которому работает ремень, это действие увеличивает передаточное отношение. Когда требуется снижение передаточного числа, ведомый шкив раздвигается, ремень перемещается на меньший радиус. Гидротрансформатор в этой конструкции обеспечивает трогание с места, после чего блокируется. Управление шкивами выполняет электроника.

    Плюсы Вариатора:

    ·         Переключение передач происходит незаметно, без рывков

    ·         Экономичный расход топлива

    ·         Высокая динамика

    Минусы Вариатора:

    ·         Несовместимость с мощными моторами

    ·         Стоимость обслуживания и ремонта

    ·         Большое количество датчиков влияющих на работу CVT

    ·         Чувствительность к тяжелым дорожным условиям, буксировке

    Итог.

    Мы рассмотрели основные виды коробок переключения передач. Определили главные минусы и плюсы каждого типа. Но дать однозначный ответ, какой агрегат будет лучше всех, невозможно. Каждый хорош в своем диапазоне задач, и выбор агрегата, которым будет оснащен автомобиль, учитывая диапазон задач, уже ложится на плечи конструкторов автомобиля и потребителя.


    Robot Control — обзор

    Виртуальные и тактильные интерфейсы для географической информации

    При взаимодействии человека с компьютером тактильное устройство дает людям ощущение соприкосновения с компьютерной средой, поэтому при прикосновении к виртуальным объектам они кажутся реальными и заметный. Примером может служить симулятор медицинского тренинга, в котором пользователь может почувствовать, как игла проталкивается через виртуальную ткань. Тактильные ощущения применимы практически во всех областях вычислений, включая видеоигры, медицинское обучение, научную и географическую визуализацию, инженерное проектирование, дистанционное управление транспортными средствами и роботами, искусство, медицинскую реабилитацию и интерфейсы для слепых.

    В большинстве тактильных интерфейсов используется обратная связь по силе, пользователь может ощущать силы, прикладываемые к телу пользователя посредством движений тактильного устройства, воспринимаемые пользователем в основном через мышечно-скелетные силы, а также через кожу, которая соприкасается с физическим интерфейсом к телу. тактильное устройство. Это часто достигается за счет того, что пользователь берет ручку, соединенную внутри устройства с двигателями, которые генерируют силу, и двумерными тактильными устройствами, такими как рулевые колеса с обратной связью по усилию и джойстики с обратной связью по усилию.Вибрационные двигатели применяются внутри чего-то, что удерживается (например, игрового контроллера или мыши с обратной связью по усилию). Тактильная обратная связь используется для приложения силы непосредственно к коже, чтобы обеспечить ощущение текстуры или изменения температуры.

    Устройства Haptic имеют разную сложность, уровень разработки, точность и стоимость и могут перемещаться по-разному. Устройства с силовой обратной связью часто описываются их степенями свободы (DOF). Глубина резкости относится к направлению движения. Общие степени свободы включают движение вправо-влево ( X ), движение вверх-вниз ( Y ), движение вперед-назад ( Z ), крен (вращение вокруг оси Z), тангаж (вращение вокруг оси X). , и рыскание (вращение вокруг оси Y).

    Полезность тактильных интерфейсов с географической информацией была исследована для смягчения эффектов расстояния; удаленные пользователи могут взаимодействовать; телеприсутствие используется для управления объектами на удаленном или безопасном расстоянии, например, при ядерных операциях и подводных исследованиях. Несколько международных групп исследователей разрабатывают тактильные интерфейсы к географической информации для слепых и слабовидящих пользователей.

    Разработка мультисенсорных интерфейсов параллельной и дополнительной информации обеспечивает и способствует «универсальному доступу» через комбинации речи, звуковых карт и тактильных (силовая обратная связь) компьютерных интерфейсов.Это облегчает доступ для тех, у кого нет зрения, которым нужны способы изучения пространственной информации с помощью карт, диаграмм и графиков, которые имеют ключевое значение для образования; продвигает новые способы увеличения визуальных отображений; позволяет исследовать и анализировать пространственные данные и другие скрытые свойства, такие как неопределенность; и улучшает навигацию с помощью пространственной информации там, где обзор ограничен, например, в системах навигации транспортных средств, и в опасных средах, встречающихся во время тушения пожаров. Этот мультисенсорный подход может быть направлен на разработку решений, обеспечивающих доступ к цифровой пространственной информации для начинающих и опытных пользователей, для молодых и старых, для людей с сенсорными нарушениями, а также в ситуациях, когда отображение на основе зрения может быть неоптимальным. из-за ограниченного размера экрана мобильных телефонов и портативных информационных помощников.

    Что на самом деле означает робот Boston Dynamics, «вращающийся» с ручкой «

    Для интернет-пользователей Boston Dynamics — это та компания, которая загружает безумные видеоролики о том, как гуманоидный робот Атлас делает сальто назад, четвероногий SpotMini открывает двери и борется с рукопожатием. мужчин, а на прошлой неделе, Segway-on-mescaline под названием Handle, разбрасывающийся вокруг, собирая и штабелируя коробки с помощью вакуумного манипулятора. Однако для журналистов и отраслевых обозревателей Boston Dynamics почти никогда не говорит о том, куда в конечном итоге направляется вся эта работа.

    Это начинает меняться. Сейчас компания демонстрирует свои амбиции, поскольку четвероногий SpotMini приближается к своему коммерческому выпуску. Сегодня Boston Dynamics еще более четко описывает свое видение, объявив о приобретении стартапа в Кремниевой долине под названием Kinema Systems, который создает программное обеспечение технического зрения, которое помогает промышленным роботам манипулировать ящиками. Это приобретение дает роботу Handle серое вещество, необходимое для выхода на рынок вслед за SpotMini. То, что в течение многих лет было кормом для интернет-видео, теперь обретает форму единого видения будущего роботов.

    Одним из самых больших препятствий, сдерживающих роботов, было их ограниченное восприятие. Мы, люди, наслаждаемся богатым набором чувств, которые помогают нам ориентироваться в окружающей среде. Роботам нужно то же самое, чтобы они не уничтожили себя. Подойдите, например, к ящику, и вы, как человек, вероятно, не слишком задумываетесь об освещении и о том, как оно может отбрасывать тени, которые отбрасывают вашу руку.

    Программное обеспечение Kinema, которое не зависит от роботов, что означает, что оно уже работает с целым рядом роботов, помимо Handle, помогает машине справиться со всеми этими проблемами.«Их система может просматривать стопку коробок, — говорит Майкл Перри, вице-президент по развитию бизнеса Boston Dynamics, — и независимо от того, насколько упорядочены или неупорядочены коробки, маркировка наверху или условия освещения, они могут определить, какие ящики отделены друг от друга, и спланировать путь для захвата ящика ».

    Это огромная часть того, что должен делать Handle, робот, предназначенный для работы на складах. Но робот также будет полагаться на свою общую форму, чтобы выполнять свою новую работу.Именно здесь более крупная стратегия BD становится еще более интересной: хотя Handle, Atlas и SpotMini почти не похожи друг на друга, на самом деле они тесно связаны.

    «Рукоятка не совсем отличается от Atlas, — говорит руководитель Boston Dynamics Марк Райберт. Действительно, на видео Атласа три года назад было показано, как робот собирает коробки двумя руками, оканчивающимися окурками, — руками, которыми Хэндл владел в своем собственном видео год спустя. Проблемы двуногого передвижения в основном те же, а именно проблемы с балансом, которых нет у четвероногого робота, такого как SpotMini, как и проблемы манипулирования двумя руками, которые SpotMini (будучи собакой в ​​человеческой форме Атласа) также не делится.

    Но в этом вся прелесть роботов. Вы можете изменять их формы, чтобы адаптировать их к различным задачам и средам. Атлас ходит на двух ногах, а Хэндл катится на двух колесах, но в любом случае это двуногое передвижение сокращает след роботов. «Если бы это был четырехколесный робот, он должен был бы быть намного больше, чтобы достичь такого уровня досягаемости и подъема боксов», — говорит Перри. «Итак, это робот, который предназначен для работы в среде, предназначенной для человека, и при этом может выполнять задачу.”

    Причина, по которой BD может относительно легко изменять формы своих роботов, сводится к одной большой вещи: перепрофилированному программному обеспечению.

    Pilot: Advanced Gamepad Control

    Время завершения: 10 минут

    В этом руководстве мы рассмотрим, как настроить и перемещать любого робота с помощью геймпада или другого контроллера. Мобильной базой можно управлять с помощью простых команд скорости, тогда как для сложных роботов и манипуляторов нам потребуется детальный контроль. Команды скорости на мобильную базу будут транслироваться с осей джойстика геймпада в сообщение Twist или TwistStamped, которое затем отправляется в выбранную тему, в то время как более гибкое настраиваемое управление включается через сообщения Joy.

    В НАСТРОЙКИ> ПИЛОТ> УПРАВЛЕНИЕ прокрутите вниз и включите «использовать внешний игровой контроллер». Подключите геймпад к компьютеру через Bluetooth или USB и нажмите любую кнопку. Поле ниже должно загореться зеленым, как показано ниже, через несколько секунд:

    Это работает «из коробки» с простыми геймпадами, такими как контроллер Xbox. В НАСТРОЙКИ> ПИЛОТ> УПРАВЛЕНИЕ установите тип темы Twist или TwistStamped и выберите имя темы джойстика, в котором должны публиковаться эти сообщения скорости, обычно / cmd_vel .В этой простой настройке левая вертикальная ось преобразуется в линейную поступательную скорость (linear.x), а правая горизонтальная ось преобразуется в вращение влево-вправо (angular.z). Эта настройка работает лучше всего, если у вас есть мобильная база с настроенной темой, принимающей сообщения Twist.

    Сообщения

    Joy по существу содержат список всех кнопок и осей, которые нажимаются или перемещаются в любой момент времени, и поэтому содержат больше информации, чем сообщение поворота. Если вам нужно более продвинутое управление джойстиком или вы хотите сохранить состояние, или если у вашего робота уже настроена тема, принимающая сообщения Joy, это для вас.
    Оси в сообщении Joy обычно имеют значения от -1 до 1, которые представляют триггеры и джойстики на вашем контроллере.

    Отображение по умолчанию для стандартных контроллеров показано ниже. Мы рекомендуем использовать узел переназначения джойстика, чтобы изменить эти значения на желаемую конфигурацию на стороне робота.

    На странице Pilot Settings измените тип темы на sensor_msgs / Joy и задайте имя темы джойстика для темы, по которой вы хотите получать сообщения, обычно / joy или / joy_orig .

    Поддерживаются самые распространенные геймпады, но могут быть доступны не все функции. Мы протестировали контроллер PS4 и контроллеры Xbox. Убедитесь, что ваш геймпад работает должным образом, проверив полученные сообщения на роботе.

    Если у вашего робота нет темы, которая уже принимает сообщения Joy , вам нужно будет написать что-нибудь самостоятельно. К счастью, уже существует множество прекрасных примеров. Для реализации ROS + c ++ я рекомендую узел конвертера Fetch Robotics Joy в качестве отправной точки.Если вы ищете простой скелет для Python + ROS, скопируйте и измените приведенный ниже код, который публикует радостные сообщения в теме команды End-Effector Twist:

    Глоссарий терминов по робототехнике | Определения и примеры робототехники

    Термины, определения и примеры робототехники

    Функция графического 3D-дисплея
    Функция трехмерного графического отображения (далее именуемая функцией трехмерного отображения) заключается в том, что трехмерная модель робота отображается в окне подвесного программирования, и может быть подтверждено текущее значение робота.Используя многооконную функцию, позиция обучения задания, отображаемая в содержании задания, также может быть подтверждена в окне 3D-дисплея. Когда функция функциональной безопасности активна, также может отображаться диапазон функциональной безопасности.


    Абсолютные данные (данные ABSO)
    Абсолютные данные (данные ABSO) — это поправочный коэффициент для данных, который устанавливает указанное нулевое значение, когда робот находится в заданном исходном положении (положение калибровки).

    Точность
    Точность — это измерение отклонения между командной характеристикой и достигнутой характеристикой (R15.05-2), или точность, с которой может быть достигнуто вычисленное или вычисленное положение робота. Точность обычно хуже, чем повторяемость руки. Точность не постоянна по всему рабочему пространству из-за влияния кинематики звена.

    Активный совместимый робот
    Активно совместимый робот — это робот, в котором изменение движения во время выполнения задачи инициируется системой управления. Модификация индуцированного движения незначительна, но достаточна для облегчения выполнения желаемой задачи.

    Фактическая позиция
    Положение или расположение точки управления инструментом. Обратите внимание, что это не будет точно таким же, как позиция запроса, из-за множества невыявленных ошибок, таких как отклонение линии связи, нерегулярность передачи, допуски в длине линии связи и т. Д.

    Привод
    Силовой механизм, используемый для движения или поддержания положения робота (например, двигатель, который преобразует электрическую энергию, чтобы вызвать движение робота) (R15.07). Привод реагирует на сигнал, полученный от системы управления.

    Плечо
    Связанный набор звеньев и механических соединений, включающий робот-манипулятор, который поддерживает и / или перемещает запястье и кисть или рабочий орган в пространстве. Сама рука не имеет рабочего органа.
    См. Манипулятор, Рабочий орган и Запястье.

    Шарнирно-сочлененный манипулятор
    Манипулятор с рукой, которая разделена на секции (звенья) одним или несколькими суставами.Каждое из сочленений представляет собой степень свободы в системе манипулятора и допускает поступательное и вращательное движение.

    Шарнирное соединение
    Описывает сочлененное устройство, такое как сочлененный манипулятор. Шарниры обеспечивают вращение вокруг вертикальной оси и подъем из горизонтальной плоскости. Это позволяет роботу достигать ограниченного пространства.

    Робот-сборщик
    Робот, специально разработанный для стыковки, подгонки или иной сборки различных деталей или компонентов в готовые изделия.В основном используется для захвата деталей и соединения или подгонки их друг к другу, например, при производстве на сборочных линиях.

    Функция автоматического измерения
    Для оптимального движения робота необходимо указать массовые характеристики рабочего органа. Эти свойства могут быть получены из CAD-модели инструмента. Функция автоматического измерения является альтернативой модели САПР и использует саму руку робота для измерения свойств инструмента. С помощью этой функции пользователь может регистрировать нагрузку на инструмент, положение центра тяжести инструмента и момент инерции в центре тяжести.

    Автоматический режим
    См. Режим воспроизведения.

    Ось
    Направление, используемое для задания движения робота в линейном или вращательном режиме. (ISO 8373)

    Взаимодействие осей
    Область пересечения осей — это функция, которая определяет текущее положение каждой оси и выводит сигнал в зависимости от того, находится ли текущее положение в пределах предварительно определенного диапазона.


    База
    Устойчивая платформа, к которой крепится промышленный робот-манипулятор.

    Базовая система координат
    Базовая система координат (иногда называемая мировой системой координат) определяет общую точку отсчета для ячейки или приложения. Это полезно при использовании нескольких роботов или устройств, поскольку позиции, определенные в базовых координатах, будут одинаковыми для всех роботов и устройств. (см. рисунок справа)

    Базовая ссылка
    Стационарная базовая конструкция манипулятора робота, поддерживающая первый сустав.

    Приработка
    Burn-In — это процедура тестирования робота, при которой все компоненты робота работают непрерывно в течение длительного периода времени.Это делается для проверки движения и программирования движения робота на ранних этапах, чтобы избежать сбоев в работе после развертывания.


    Компьютерное проектирование (CAD)
    Компьютерное проектирование (САПР). Приложения компьютерной графики, предназначенные для проектирования объектов (или частей), которые должны быть изготовлены. Компьютер используется в качестве инструмента для разработки схем и создания чертежей, которые позволяют точно производить объект. Система CAD позволяет создавать трехмерные чертежи основных фигур, точно определять размеры и размещение компонентов, создавать линии заданной длины, ширины или угла, а также удовлетворять различные геометрические формы.Эта система также позволяет проектировщику испытывать моделируемую деталь при различных напряжениях, нагрузках и т. Д.

    Карусель
    Вращающаяся платформа, которая доставляет объекты роботу и служит системой очереди объектов. Эта карусель доставляет объекты или детали на станцию ​​загрузки / выгрузки робота.

    Декартовы координаты
    Декартовы координаты — это тип системы координат, которая определяет положение точки в двухмерном пространстве с помощью пары числовых чисел, которые дополнительно определяют расстояние до фиксированных осей, перпендикулярных друг другу.Проще говоря, график XY представляет собой двумерную декартову систему координат. Когда точка задана в трехмерном пространстве (график XYZ), она составляет трехмерную декартову систему координат. Положение TCP робота указывается в декартовой системе координат.

    Декартов манипулятор
    Декартов манипулятор — это манипулятор с призматическими шарнирами, который позволяет перемещаться по одной или нескольким из трех осей в системе координат X, Y, Z.

    Декартова топология
    Топология, в которой повсюду используются призматические соединения, обычно расположенные перпендикулярно друг другу.

    Робот в декартовых координатах
    Робот с декартовыми координатами — это робот, чьи степени свободы манипулятора определяются декартовыми координатами. Здесь описываются движения восток-запад, север-юг и вверх-вниз, а также вращательные движения для изменения ориентации.

    Категория 3 (Cat3)
    Категория 3 (категория 3) означает, что части системы управления, связанные с безопасностью, будут спроектированы таким образом, чтобы:

    • Единичные неисправности не препятствуют правильной работе функции безопасности.

    • Одиночные неисправности будут обнаружены при следующем запросе функции безопасности или до него.

    • Когда происходит единичный отказ, безопасное состояние должно поддерживаться до тех пор, пока обнаруженный отказ не будет исправлен.

    • Обнаружены все разумно предсказуемые неисправности.

    Центробежная сила
    Когда тело вращается вокруг оси, отличной от той, которая находится в центре его масс, оно оказывает внешнюю радиальную силу, называемую центробежной силой, на ось, которая удерживает его от движения по прямой касательной линии.Чтобы компенсировать эту силу, робот должен приложить противоположный крутящий момент в суставе вращения.

    Тип кругового движения
    Расчетный путь, который выполняет робот, имеет круглую форму.

    Зажим
    Конечный эффектор, который служит пневматической рукой, которая контролирует захват и отпускание объекта. Тактильные датчики и датчики силы обратной связи используются для управления силой, приложенной зажимом к объекту. См. «Концевой эффектор».

    Зажим
    Максимально допустимая сила, действующая на область тела в результате столкновения робота, когда период контакта приводит к пластической деформации мягких тканей человека.

    Сила зажима
    При контакте может быть зажат части тела (частей).

    Замкнутый
    Управление осуществляется роботом-манипулятором посредством обратной связи. Когда манипулятор находится в действии, его датчики постоянно передают информацию контроллеру робота, который используется для дальнейшего направления манипулятора в рамках данной задачи. Многие датчики используются для передачи информации о размещении манипулятора, скорости, крутящем моменте, приложенных силах, а также о размещении целевого движущегося объекта и т. Д.См. Обратную связь.

    Коллаборативный робот
    Термин, используемый для описания роботизированной системы, предназначенной для работы в одном или нескольких из четырех совместных режимов.

    Командный интерпретатор

    Модуль или набор модулей, определяющий значение полученной команды. Команда разбивается на части (разбирается) и обрабатывается.

    Командная позиция
    Конечная точка движения робота, которую пытается достичь контроллер.

    Соответствие
    Смещение манипулятора в ответ на силу или крутящий момент. Высокая податливость означает, что манипулятор немного перемещается при нагрузке. Это называется пористым или упругим. При стрессе низкая комплаенс будет жесткой системой.

    Соответствующий робот
    Робот, который выполняет задачи по отношению к внешним силам, изменяя свои движения таким образом, чтобы эти силы сводились к минимуму. Указанное или разрешенное движение достигается за счет поперечной (горизонтальной), осевой (вертикальной) или вращательной податливости.

    Конфигурация
    Расположение ссылок, созданное определенным набором совместных позиций на роботе. Обратите внимание, что может быть несколько конфигураций, приводящих к одному и тому же положению конечной точки.

    Контактный датчик
    Устройство, которое обнаруживает присутствие объекта или измеряет величину приложенной силы или крутящего момента, приложенного к объекту при физическом контакте с ним. Контактное зондирование можно использовать для определения местоположения, идентичности и ориентации деталей.

    Непрерывный путь
    Описывает процесс, в котором робот контролирует весь пройденный путь, в отличие от метода обхода от точки к точке. Это используется, когда траектория рабочего органа наиболее важна для обеспечения плавного движения, например, при окраске распылением и т. Д. См. «От точки к точке».

    Алгоритм управления
    Монитор, используемый для обнаружения отклонений траектории, в котором датчики обнаруживают такие отклонения, и приложения крутящего момента вычисляются для приводов.

    Команда управления
    Команда, передаваемая роботу с помощью устройства ввода от человека к машине. См. Кулон (Обучение). Эта команда принимается системой контроллера робота и интерпретируется. Затем соответствующая команда подается на исполнительные механизмы робота, которые позволяют ему реагировать на начальную команду. Часто команда должна интерпретироваться с использованием логических единиц и определенных алгоритмов. См. «Устройство ввода и цикл команд».

    Устройство управления
    Любая часть управляющего оборудования, обеспечивающая средства для вмешательства человека в управление роботом или роботизированной системой, например кнопка аварийного останова, кнопка запуска или селекторный переключатель.(R15.06)

    Режим управления
    Средства, с помощью которых инструкции передаются роботу.

    Управляемость
    Свойство системы, с помощью которого входной сигнал может переводить систему из начального состояния в желаемое состояние по предсказуемому пути в течение заранее определенного периода времени.

    Контроллер
    Устройство обработки информации, входными данными которого являются как желаемое, так и измеренное положение, скорость или другие соответствующие переменные в процессе, а выходными данными являются управляющие сигналы для управляющего двигателя или исполнительного механизма.(R15.02)

    Система управления
    Механизм управления роботом обычно представляет собой компьютер определенного типа, который используется для хранения данных (как робота, так и рабочей среды), а также хранения и выполнения программ, управляющих роботом. Система Контроллера содержит программы, данные, алгоритмы; логический анализ и различные другие операции обработки, которые позволяют ему выполнять. См. Робот.

    Система координат или рама
    Система координат (или рамка) определяет исходное положение и ориентацию, с которой можно измерить положение робота.Все положения робота определены со ссылкой на систему координат. Роботы Yaskawa используют следующие системы координат:

    Центральный процессор (ЦП)
    Центральный процессор (ЦП) — это основная печатная плата и процессор системы контроллера.

    Кубическая зона помех
    Эта область представляет собой прямоугольный параллелепипед, который параллелен базовой координате, координате робота или координате пользователя. Контроллер YRC1000 определяет, находится ли текущее положение TCP манипулятора внутри или за пределами этой области, и выводит это состояние в качестве сигнала.

    Цикл
    Однократное выполнение полного набора движений и функций, содержащихся в программе робота. (R15.05-2)

    Циклическая система координат
    Система координат, которая определяет положение любой точки с точки зрения углового размера, радиального размера и высоты от базовой плоскости. Эти три измерения определяют точку на цилиндре.

    Цикло-привод
    Торговая марка устройства понижения скорости, которое преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости, обычно используемое на большой (большей) оси.

    Цилиндрическая топология
    Топология, в которой плечо следует радиусом горизонтального круга с призматическим шарниром для подъема или опускания круга. Не популярен в промышленности.


    Выключатель Dead Man
    Устаревший срок. См. Включение устройства.

    Степени свободы
    Количество независимых направлений или суставов робота (R15.07), которые позволяют роботу перемещать свой конечный эффектор через требуемую последовательность движений.Для произвольного позиционирования необходимо 6 степеней свободы: 3 для положения (влево-вправо, вперед-назад и вверх-вниз) и 3 для ориентации (рыскание, тангаж и крен).

    Прямой привод
    Совместное срабатывание, в том числе без элементов трансмиссии (т. Е. Тяга привинчена к выходу двигателя).

    Время простоя
    Период времени, в течение которого робот или производственная линия останавливаются из-за неисправности или отказа. См. Время безотказной работы.

    Привод
    Редуктор скорости (зубчатый) для преобразования низкого крутящего момента на высокой скорости в высокий крутящий момент на низкой скорости.См. Разделы Harmonic Drive, Cyclo Drive и Rotary Vector Drive).

    Прямая доставка
    Метод подвода предмета к рабочему месту под действием силы тяжести. Обычно желоб или контейнер размещают таким образом, чтобы по окончании работы над деталью она упала или упала в желоб или на конвейер с небольшой или отсутствующей транспортировкой робота.

    Динамика
    Изучение движения, сил, вызывающих движение, и сил, обусловленных движением. Динамика манипулятора робота очень сложна, поскольку является результатом кинематического поведения всех масс внутри конструкции руки.Кинематика манипулятора робота сложна сама по себе.


    Аварийный останов
    Работа схемы с использованием аппаратных компонентов, которая перекрывает все другие органы управления роботом, снимает мощность привода с исполнительных механизмов робота и вызывает остановку всех движущихся частей. (R15.06)

    Переключатель включения
    См. Включение устройства.

    Разрешающее устройство
    Устройство с ручным управлением, которое при постоянном включении разрешает движение.Освобождение устройства должно остановить движение робота и связанное с ним оборудование, которое может представлять опасность. (R15.06)

    Кодировщик
    Устройство обратной связи в руке робота-манипулятора, которое предоставляет контроллеру данные о текущем положении (и ориентации руки). Луч света проходит через вращающийся кодовый диск, который содержит точный узор из непрозрачных и прозрачных сегментов на своей поверхности. Свет, который проходит через диск, попадает в фотодетекторы, которые преобразуют световой рисунок в электрические сигналы.См. Раздел «Обратная связь, управление с обратной связью» и «Датчик обратной связи».

    EOAT
    См. Захват или Концевой эффектор.

    Рабочий орган
    Вспомогательное устройство или инструмент, специально предназначенные для крепления к запястью робота или монтажной пластине для инструмента, чтобы робот мог выполнять свою задачу. (Примеры могут включать: захват, пистолет для точечной сварки, пистолет для дуговой сварки, распылительный пистолет или любые другие инструменты.) (R15.06)

    Конечная точка
    Номинальное управляемое положение, которого манипулятор будет пытаться достичь в конце пути движения.Конец дистального звена.

    Ошибка
    Разница между фактическим ответом робота и отданной командой.

    Расширяемость
    Возможность добавлять в систему ресурсы, такие как память, жесткий диск большего размера, новая карта ввода-вывода и т. Д.

    Предел внешнего усилия
    Пороговое значение, при котором робот перемещается или сохраняет положение даже при приложении внешних сил (при условии, что силы не превышают пределов, которые могут вызвать ошибку).


    Обратная связь
    Возврат информации от манипулятора или датчика к процессору робота для обеспечения самокорректирующегося управления манипулятором.
    См. Раздел «Управление обратной связью» и «Датчик обратной связи».

    Управление обратной связью
    Тип управления системой, получаемый, когда информация от манипулятора или датчика возвращается контроллеру робота для получения желаемого эффекта робота. См. Раздел «Обратная связь, управление с обратной связью» и «Датчик обратной связи».

    Датчик обратной связи
    Механизм, через который информация от сенсорных устройств возвращается в блок управления робота. Информация используется в последующем направлении движения робота. См. Управление с обратной связью и управление с обратной связью.

    Гибкость
    Способность робота выполнять самые разные задачи.

    Силовая обратная связь
    Метод обнаружения, использующий электрические сигналы для управления рабочим органом робота во время работы рабочего органа.Информация поступает от датчиков силы рабочего органа к блоку управления роботом во время выполнения конкретной задачи, чтобы обеспечить улучшенную работу рабочего органа.
    См. Раздел «Обратная связь», «Датчик обратной связи» и «Датчик силы».

    Датчик силы
    Датчик, способный измерять силы и крутящий момент, прилагаемые роботом и его запястьем. Такие датчики обычно содержат тензодатчики. Датчик предоставляет информацию, необходимую для обратной связи по силе. См. Force Feedback

    .

    Решение прямой кинематики

    Расчет, необходимый для определения положения конечной точки с учетом положений шарниров.Для большинства топологий роботов это проще, чем найти решение с обратной кинематикой.

    Передняя кинематика
    Вычислительные процедуры, определяющие, где находится рабочий орган робота в пространстве. В процедурах используются математические алгоритмы вместе с совместными датчиками для определения его местоположения.

    Рамка
    Система координат, используемая для определения положения и ориентации объекта в пространстве, а также положения робота в его модели.

    Блок функциональной безопасности (FSU)
    Блок функциональной безопасности (FSU) — это компонент контроллера робота Yaskawa, который обеспечивает программируемые функции безопасности, которые обеспечивают совместную работу робота. Поскольку эти функции безопасности являются программируемыми, FSU позволяет минимизировать площадь, занимаемую расположенным поблизости оборудованием, а также зоны, доступные для человека. FSU состоит из двух параллельных центральных процессоров (ЦП), работающих одновременно, что обеспечивает двухканальную проверку.Кроме того, FSU получает позицию робота от своих энкодеров независимо от системы управления движением робота. Основываясь на этой обратной связи, FSU контролирует положение, скорость и положение манипулятора и инструмента.


    Портал
    Регулируемый подъемный механизм, который перемещается по фиксированной платформе или гусенице, поднятому или на уровне земли по осям X, Y, Z.

    Портальный робот
    Робот с тремя степенями свободы по системе координат X, Y и Z.Обычно состоит из системы намотки (используемой как кран), которая при намотке или размотке обеспечивает движение вверх и вниз по оси Z. Катушка может скользить слева направо по валу, который обеспечивает движение по оси Z. Катушка и вал могут двигаться вперед и назад по направляющим, которые обеспечивают движение по оси Y. Обычно используется, чтобы расположить концевой эффектор над желаемым объектом и поднять его.

    Гравитационная загрузка
    Сила, прилагаемая вниз, из-за веса манипулятора робота и / или нагрузки на конце руки.Сила создает ошибку в отношении точности положения концевого эффектора. Компенсирующая сила может быть вычислена и применена, чтобы вернуть руку в желаемое положение.

    Захват
    Концевой эффектор, предназначенный для захвата и удержания (ISO 8373) и «захватывания» или захвата объекта. Он прикреплен к последнему звену руки. Он может удерживать объект, используя несколько различных методов, таких как: приложение давления между своими «пальцами», или может использовать намагничивание или вакуум для удержания объекта и т. Д.См. «Концевой эффектор».


    Рука
    Зажим или захват, используемый в качестве рабочего органа для захвата предметов. См. Рабочий орган, Захват.

    Ручное управление
    Совместная функция, позволяющая оператору вручную направлять робота в желаемое положение. Эта задача может быть решена за счет использования дополнительного внешнего оборудования, установленного непосредственно на роботе, или робота, специально разработанного для поддержки этой функции. Оба решения потребуют использования элементов функциональной безопасности.Оценка риска должна использоваться, чтобы определить, необходимы ли какие-либо дополнительные меры безопасности для снижения рисков в роботизированной системе.

    Привод гармоник
    Компактный легкий редуктор, который преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости. Обычно находится на малой (меньшей) оси.

    Ремень
    Обычно несколько проводов, связанных вместе для подачи питания и / или передачи сигналов к / от устройств. Например, двигатели робота подключены к контроллеру через жгут проводов.

    Опасное движение
    Непреднамеренное / неожиданное движение робота, которое может привести к травме.

    Удерживать
    Остановка всех движений робота во время его последовательности, при которой на роботе сохраняется некоторая мощность. Например, выполнение программы останавливается, однако питание серводвигателей остается включенным, если требуется перезапуск.

    Исходное положение
    Известное и фиксированное положение на основной оси координат манипулятора, где он останавливается, или в указанном нулевом положении для каждой оси.Это положение уникально для каждой модели манипулятора. На роботах Motoman® есть индикаторные метки, которые показывают исходное положение для соответствующей оси.


    МЭК
    Международная электротехническая комиссия

    Индуктивный датчик
    Класс датчиков приближения, который имеет половину ферритового сердечника, катушка которого является частью цепи генератора. Когда металлический объект входит в это поле, в какой-то момент объект поглощает достаточно энергии из поля, чтобы заставить осциллятор перестать колебаться.Это означает, что объект присутствует в заданной близости. См. Датчик приближения.

    Промышленный робот
    Перепрограммируемый многофункциональный манипулятор, предназначенный для перемещения материалов, деталей, инструментов или специализированных устройств посредством переменных запрограммированных движений для выполнения множества задач (R15.06). Основные компоненты: одна или несколько рук, которые могут двигаться в нескольких направлениях, манипулятор и компьютерный контроллер, который дает подробные инструкции по перемещению.

    ИНФОРМАЦИЯ
    Язык программирования роботов для роботов Yaskawa. Язык ИНФОРМ позволяет пользователю робота: инструктировать робота использовать свои основные возможности для выполнения определенного набора ожиданий, а также описывать роботу посредством определения параметров и условий, какие ожидания возникают в определенных ситуациях или сценариях. Проще говоря, язык программирования INFORM позволяет пользователю указывать роботу, что делать, когда это делать, где это делать и как это делать.

    Устройства ввода
    Разнообразные устройства, позволяющие взаимодействовать между человеком и машиной. Это позволяет человеку программировать, управлять и моделировать робота. К таким устройствам относятся пульт для программирования, компьютерные клавиатуры, мышь, джойстики, кнопки, панель оператора, тумба оператора и т. Д.

    Инструкция
    Строка программного кода, вызывающая действие системного контроллера. См. Командное положение.

    Цикл команд
    Время, необходимое для цикла системы контроллера робота для декодирования команды или инструкции перед ее выполнением.Программисты-роботы должны очень внимательно анализировать цикл команд, чтобы обеспечить быструю и правильную реакцию на изменяющиеся команды.

    Интегрировать
    Чтобы объединить разные подсистемы, такие как роботы и другие устройства автоматизации, или, по крайней мере, разные версии подсистем в одной оболочке управления.

    Интегратор
    Компания, предоставляющая услуги с добавленной стоимостью, результатом которых является создание решений автоматизации путем объединения робота и другого оборудования автоматизации и управления для создания решения автоматизации для конечных пользователей.

    Интеллектуальный робот
    Робот, который можно запрограммировать на выбор производительности в зависимости от сенсорных входов с минимальной или нулевой помощью со стороны человека. См. Робот.

    Зона помех
    Зона помех — это функция, которая предотвращает помехи между несколькими манипуляторами или манипулятором и периферийным устройством. Области можно настроить до 64 областей. Три типа методов использования каждой области интерференции: кубическая интерференция, вне кубической области и осевая интерференция.

    Интерполяция
    Метод создания путей к конечным точкам. В общем, для задания движения несколько узловых точек определяются до того, как все промежуточные положения между ними вычисляются с помощью математической интерполяции. Таким образом, используемый алгоритм интерполяции существенно влияет на качество движения.

    ISO
    Международная организация по стандартизации

    ISO 10218-1 Роботы и робототехнические устройства — Требования безопасности для промышленных роботов — Часть 1: Роботы
    Спецификация безопасности робота, в которой рассматриваются требования производителя, функциональность, требуемые характеристики безопасности, опасности, меры защиты и документация для самого робота.

    ISO 10218-2 Роботы и роботизированные устройства — Требования безопасности для промышленных роботов — Часть 2: Роботизированные системы и интеграция
    Сопутствующий документ ISO 10218-1. Эта спецификация безопасности предоставляет руководство как для конечных пользователей, так и для интеграторов роботов, поскольку она касается безопасного проектирования, установки и ввода в эксплуатацию робототехнических систем, а также рекомендуемых процедур, мер безопасности и информации, необходимой для использования.

    ISO TS 15066 (ANSI RIA 15.606): Роботы и роботизированные устройства — Совместные роботы
    Предоставляет подробные инструкции, отсутствующие в ISO 10218, части 1 или 2, по безопасному использованию промышленных роботов, работающих совместно.


    Матрица Якоби
    Матрица Якоби связывает скорости изменения совместных значений со скоростью изменения координат конечных точек. По сути, это набор алгоритмов вычислений, которые обрабатываются для управления позиционированием робота.

    РАБОТА
    JOB — это название Yaskawa программы для роботов, созданной с использованием языка программирования роботов INFORM компании Yaskawa. Обычно задание состоит из инструкций, которые сообщают контроллеру робота, что делать, и данных, которые программа использует во время работы.

    Шарнир
    Часть системы манипулятора, которая обеспечивает вращение и / или поступательную степень свободы звена рабочего органа.

    Совместное интерполированное движение
    Метод координации движения суставов, при котором все суставы достигают желаемого места одновременно. Этот метод сервоуправления обеспечивает предсказуемый путь независимо от скорости и обеспечивает самое быстрое время цикла захвата и размещения для конкретного движения.

    Тип шарнирного движения
    Тип совместного движения, также известный как двухточечное движение, представляет собой метод интерполяции траектории, который управляет движением робота, перемещая каждое соединение непосредственно в заданное положение, так что все оси достигают этого положения одновременно. Хотя путь предсказуем, он не будет линейным.

    Совместное пространство
    а. Совместное пространство (или совместные координаты) — это просто метод определения положения робота с точки зрения значения каждой оси, а не положения TCP.Например, исходное положение робота часто определяется в Joint Space, поскольку каждая ось находится под углом 0 градусов.
    б. Набор совместных позиций.

    Соединения
    Части манипулятора робота, которые действительно сгибаются или двигаются.


    Кинематика
    Связь между движением конечной точки робота и движением суставов. Для декартового робота это набор простых линейных функций (линейные дорожки, которые могут быть расположены в направлениях X, Y, Z), для вращающейся топологии (шарниры, которые вращаются), однако кинематика намного сложнее, включая сложные комбинации тригонометрии. функции.Кинематика руки обычно делится на прямое и обратное решения.


    Захват ковша
    Конечный эффектор, который действует как совок. Он обычно используется для сбора жидкости, переноса ее в форму и заливки жидкости в форму. Обычно используется для работы с расплавленным металлом в опасных условиях. См. «Концевой эффектор».

    Лазер
    Акроним от «Усиление света за счет вынужденного излучения». Устройство, которое производит когерентный монохроматический луч света, который является чрезвычайно узким и сфокусированным, но все же находится в пределах видимого светового спектра.Обычно он используется в качестве бесконтактного датчика для роботов. Роботизированные приложения включают: определение расстояния, определение точного местоположения, картографирование поверхности, сканирование штрих-кода, резку, сварку и т. Д.

    Линейное интерполированное движение
    Это метод интерполяции траектории, который управляет движением робота, перемещая каждое соединение в скоординированном движении так, чтобы все оси приходили в позицию одновременно. Путь контрольной точки инструмента (TCP) предсказуем и будет линейным.

    Тип линейного перемещения
    Это метод интерполяции траектории, который управляет движением робота, перемещая каждое соединение в скоординированном движении так, чтобы все оси приходили в позицию одновременно. Путь контрольной точки инструмента (TCP) предсказуем и будет линейным.

    Ссылка
    Жесткая часть манипулятора, соединяющая соседние суставы.

    Ссылки
    Статический материал, который соединяет суставы руки вместе.Тем самым образуется кинематическая цепочка. В человеческом теле звеньями являются кости.

    Время цикла нагрузки
    Термин технологического процесса производственной или сборочной линии, который описывает полное время, необходимое для выгрузки последней заготовки и загрузки следующей.


    Магнитные детекторы
    Датчики роботов, которые могут определять присутствие ферромагнитного материала. Твердотельные детекторы с соответствующим усилением и обработкой могут обнаруживать металлический объект с высокой степенью точности.См. Датчик.

    Манипулятор
    Машина или роботизированный механизм, который обычно состоит из серии сегментов (соединенных или скользящих друг относительно друга) с целью захвата и / или перемещения объектов (частей или инструментов), обычно с несколькими степенями свободы. Управление манипулятором может осуществляться оператором, программируемым электронным контроллером или любой логической системой (например, кулачковым устройством, проводным и т. Д.) (ISO 8373)
    См. Руку, запястье и рабочий орган

    .

    Ручной режим
    См. Режим обучения.

    Погрузочно-разгрузочные работы
    Процесс, с помощью которого промышленный робот-манипулятор переносит материалы из одного места в другое.

    Робот для обработки материалов
    Робот, спроектированный и запрограммированный таким образом, чтобы он мог обрабатывать, резать, формировать или изменять форму, функцию или свойства материалов, с которыми он работает, между моментом, когда материалы впервые схвачены, и временем их выпуска в производственный процесс.

    Функция сдвига зеркала
    С помощью функции зеркального сдвига задание преобразуется в задание, в котором траектория симметрична пути исходного задания.Это преобразование может быть выполнено для указанной координаты из координат X-Y, X-Z или Y-Z координат робота и координат пользователя. Функция зеркального смещения подразделяется на следующие три: функция импульсного зеркального смещения, функция зеркального смещения координат робота и функция зеркального смещения пользовательских координат. (см. рисунок справа)

    Переключатель режима
    В соответствии со стандартами безопасности промышленный робот имеет три различных режима работы. Это обучение (также называемое ручным), воспроизведение (также называемое автоматическим) и дистанционное управление.Переключение между этими режимами осуществляется с помощью переключателя с ключом на подвесном пульте обучения и называется переключателем режима.

    Модульность
    Свойство гибкости встроено в робота и систему управления путем сборки отдельных узлов, которые можно легко соединить или скомпоновать с другими частями или узлами.

    Модуль
    Автономный компонент пакета. Этот компонент может содержать подкомпоненты, известные как подмодули.

    Ось движения
    Линия, определяющая ось движения линейного или поворотного сегмента манипулятора.

    Двигатель
    См. Серводвигатель.

    Отключение звука
    При тестировании программы робота отключение любых устройств защиты от присутствия во время полного цикла робота или его части.


    Автономное программирование
    Метод программирования, при котором целевая программа определяется на устройствах или компьютерах отдельно от робота для последующего ввода программной информации роботу. (ISO 8373) б.Средство программирования робота во время его работы. Это становится важным при производстве и производстве сборочных линий из-за сохранения высокой производительности, пока робот программируется для других задач.

    Оператор
    Лицо, уполномоченное запускать, контролировать и останавливать предполагаемую продуктивную работу робота или роботизированной системы. Оператор также может взаимодействовать с роботом для производственных целей. (R15.06)

    Оптический кодировщик
    Датчик обнаружения, который измеряет линейное или вращательное движение, обнаруживая движение маркировки мимо фиксированного луча света.Его можно использовать для подсчета оборотов, идентификации деталей и т. Д.

    Оптические датчики приближения
    Датчики роботов, которые измеряют видимый или невидимый свет, отраженный от объекта, для определения расстояния. Лазеры используются для большей точности.

    Ориентация
    Угол, образованный большой осью объекта относительно базовой оси. Он должен быть определен относительно трехмерной системы координат. Угловое положение объекта относительно системы отсчета робота.См. Roll, Pitch и Yaw.


    Паллетирование
    Организованный процесс штабелирования пакетов (т. Е. Ящиков, пакетов, контейнеров и т. Д.) На поддоне.

    Функция PAM — регулировка положения вручную
    Регулировка положения вручную позволяет регулировать положение с помощью простых операций, наблюдая за движением манипулятора и не останавливая манипулятор. Позиции можно регулировать как в режиме обучения, так и в режиме воспроизведения.

    Функция параллельного смещения
    Параллельный сдвиг относится к смещению объекта из фиксированного положения таким образом, что все точки внутри объекта перемещаются на равное расстояние.В модели для параллельного сдвига, показанной ниже, значение сдвига может быть определено как расстояние L (трехмерное координатное смещение). Функция параллельного смещения имеет отношение к фактической работе манипулятора, потому что ее можно использовать для уменьшения объема работы, связанной с обучением, путем смещения обученного пути (или положения). В примере на рисунке ниже обученная позиция A сдвигается с шагом на расстояние L (на самом деле это трехмерное смещение XYZ, которое может распознать робот).

    Путь
    Непрерывное геометрическое место позиций (или точек в трехмерном пространстве), пересекаемое центральной точкой инструмента и описываемое в указанной системе координат. (R15.05-2)

    Полезная нагрузка — максимальная
    Максимальная масса, которой робот может манипулировать при указанной скорости, ускорении / замедлении, расположении (смещении) центра тяжести и воспроизводимости при непрерывной работе в указанном рабочем пространстве. Максимальная полезная нагрузка указана в килограммах.(R15.05-2)

    Кулон [Обучающий кулон]
    Переносное устройство ввода, связанное с системой управления, с помощью которой можно программировать или перемещать робота. (ISO 8373) Это позволяет человеку-оператору занять наиболее удобное положение для наблюдения, контроля и записи желаемых движений в памяти робота.

    Обучающий кулон
    Отображение и запись положения и ориентации системы робота и / или манипулятора по мере того, как робот вручную поэтапно перемещается от начального состояния по пути к конечному целевому состоянию.Положение и ориентация каждой критической точки (суставы, база робота и т. Д.) Записываются и сохраняются в базе данных для каждой обученной позиции, через которую проходит робот на пути к своей конечной цели. Теперь робот может повторить путь самостоятельно, следуя пути, сохраненному в базе данных.

    Уровень эффективности d (PLd)
    Уровень эффективности (PL) ISO «d» означает, что средняя вероятность опасного отказа в час связанных с безопасностью частей системы управления находится в пределах от ≥ 10-7 до <10-6.Кроме того, учитываются и другие факторы, такие как правильная установка, техническое обслуживание и защита от факторов окружающей среды. Это минимальный уровень эффективности, указанный в ISO 10218-2, раздел 5.2.2, если оценка риска не позволит использовать более низкое значение.

    Уровень эффективности e (PLe)
    Уровень эффективности ISO (PL) «e» означает, что средняя вероятность опасного отказа в час связанных с безопасностью частей системы управления находится в пределах от ≥ 10-8 до <10-7.Кроме того, учитываются и другие факторы, такие как правильная установка, техническое обслуживание и защита от факторов окружающей среды.

    Цикл подбора и размещения
    Время, необходимое манипулятору, чтобы поднять объект и поместить его в желаемое место, а затем вернуться в исходное положение. Это включает время во время фаз ускорения и замедления конкретной задачи. Движение робота контролируется из одной точки в пространстве в другую в системе движения «точка-точка» (PTP).Каждая точка запрограммирована в управляющую память робота, а затем воспроизводится во время рабочего цикла.

    Задача по подбору и размещению
    Повторяющаяся задача переноса детали, состоящая из действия подбора, за которым следует действие по размещению.

    Точки защемления
    Точка защемления — это любая точка, в которой человек или часть тела человека могут быть зажаты между движущимися частями машины, или между движущейся и неподвижной частями машины, или между материалом и любой частью машины. .Точка защемления не должна приводить к травме конечности или части тела, хотя может привести к травме — она ​​должна только защемить или ущипнуть человека, чтобы он не смог вырваться или вынуть защемленную часть из точки защемления.

    Шаг
    Вращение рабочего органа в вертикальной плоскости вокруг конца руки робота-манипулятора.
    См. Roll and Yaw.

    Режим воспроизведения
    После того, как робот запрограммирован в режиме обучения, контроллер робота можно переключить в режим воспроизведения для выполнения программы робота.В режиме воспроизведения воспроизводится программа робота. Это режим, в котором роботы используются в производстве.

    Воспроизведение
    Воспроизведение — это операция, при которой воспроизводится обученное задание. Эта функция используется, чтобы решить, где возобновить воспроизведение при запуске операции после приостановки воспроизведения и перемещения курсора или выбора других заданий. 0: запускает операцию, когда курсор находится в задании, отображаемом в данный момент. 1: Появится окно продолжения воспроизведения.Выберите «ДА», и воспроизведение возобновится в том месте, где находился курсор, когда воспроизведение было приостановлено. Если выбрано «НЕТ», воспроизведение возобновляется с того места, где находится курсор в задании, отображаемом в данный момент. Режимы Включите пульт программирования: PLAY — задание запускается кнопкой [СТАРТ] на пульте программирования, а задание REMOTE запускается периферийным устройством (внешний пусковой вход).

    точка-точка
    Движение манипулятора, в котором задано ограниченное количество точек на прогнозируемой траектории движения.Манипулятор перемещается от точки к точке, а не по непрерывной плавной траектории.

    Поза
    Альтернативный термин для конфигурации робота, который описывает линейное и угловое положение. Линейное положение включает азимут, высоту и дальность до объекта. Угловое положение включает в себя крен, тангаж и рыскание объекта. См. Roll, Pitch и Yaw.

    Позиция
    Определение местоположения объекта в трехмерном пространстве, обычно определяемое трехмерной системой координат с использованием координат X, Y и Z.

    Уровень позиции
    Уровень положения — это степень приближения манипулятора к обученному положению. Уровень положения может быть добавлен к командам перемещения MOVJ (совместная интерполяция) и MOVL (линейная интерполяция). Если уровень положения не установлен, точность зависит от скорости работы. Установка соответствующего уровня перемещает манипулятор по траектории, подходящей для окружающих условий и обрабатываемой детали. (см. рисунок справа)

    Переменные положения
    Переменные положения используются в программе робота (JOB) для определения местоположения в трехмерном пространстве, обычно определяемого трехмерной системой координат с использованием координат X, Y и Z.Поскольку это переменная, значение может меняться в зависимости от условий или информации, переданной в задание.

    Ограничение мощности и усилия (PFL)
    Совместная функция, которая позволяет оператору и роботу работать в непосредственной близости друг от друга, гарантируя, что робот замедлится и остановится до возникновения ситуации контакта. Для безопасной реализации этой функции необходимо использовать функциональную безопасность и дополнительное оборудование для обнаружения. Оценка рисков должна использоваться для определения необходимости дополнительных мер безопасности для снижения рисков в роботизированной системе.

    Устройство защиты от присутствия
    Устройство, спроектированное, сконструированное и установленное для создания сенсорного поля для обнаружения вторжения в такое поле людьми, роботами или объектами. См. Датчик.

    Программируемый логический контроллер (ПЛК)
    Твердотельная система управления, которая имеет программируемую пользователем память для хранения инструкций для реализации определенных функций, таких как: логика управления вводом-выводом, синхронизация, счетная арифметика и обработка данных.ПЛК состоит из центрального процессора, интерфейса ввода / вывода, памяти и устройства программирования, в котором обычно используются эквивалентные символы реле. ПЛК специально разработан как промышленная система управления, которая может выполнять функции, эквивалентные релейной панели или проводной твердотельной логической системе управления, и может быть интегрирована в систему управления роботом.

    Программируемый робот
    Функция, позволяющая проинструктировать робота выполнить последовательность шагов, а затем выполнять эту последовательность повторяющимся образом.Затем его можно перепрограммировать для выполнения другой последовательности шагов, если это необходимо.

    Датчик приближения
    Бесконтактное сенсорное устройство, используемое для определения, когда объекты находятся на небольшом расстоянии, и оно может определять расстояние до объекта. Несколько типов включают: радиочастотный, магнитный мост, ультразвуковой и фотоэлектрический. Обычно используется для: высокоскоростного счета, обнаружения металлических предметов, контроля уровня, считывания кодовых меток и концевых выключателей. См. Индуктивный датчик.

    Координаты импульса
    Роботы Yaskawa определяют положение осей шарниров робота в градусах для поворотных шарниров.Импульс — это еще один способ указать положение сустава робота, и он используется при подсчете импульсов энкодера двигателя робота.


    Обеспечение качества (ОК)
    Описывает методы, политику и процедуры, необходимые для проведения тестирования обеспечения качества во время проектирования, производства и доставки этапов создания, перепрограммирования или обслуживания роботов.

    Досягаемость: Объем пространства (конверт), которого может достичь рабочий орган робота, по крайней мере, в одной ориентации.

    Квазистатический зажим
    Тип контакта между человеком и частью робототехнической системы, при котором часть тела может быть зажата между движущейся частью роботизированной системы и другой неподвижной или движущейся частью робототехнической ячейки


    Вылет
    Объем пространства (оболочки), которого может достичь рабочий орган робота хотя бы в одной ориентации.

    Система реального времени
    Компьютерная система, в которой компьютер должен выполнять свои задачи в рамках временных ограничений некоторого процесса одновременно с системой, которой он помогает. Компьютер обрабатывает системные данные (входные данные) от датчиков с целью мониторинга и вычисления параметров (выходов) управления системой, необходимых для правильной работы системы или процесса. От компьютера требуется, чтобы он выполнял свою работу достаточно быстро, чтобы не отставать от оператора, взаимодействующего с ним через оконечное устройство (например, экран или клавиатуру).Оператор, взаимодействующий с компьютером, имеет возможность доступа, поиска и хранения через систему управления базой данных. Доступ к системе позволяет оператору вмешиваться и изменять работу системы.

    Робот для воспроизведения записи
    Манипулятор, для которого критические точки вдоль желаемых траекторий сохраняются последовательно путем записи фактических значений кодеров положения суставов робота, когда он перемещается под операционным управлением. Для выполнения задачи эти точки воспроизводятся в сервосистеме робота.См. Сервосистема.

    Робот с прямоугольными координатами
    Робот, рука манипулятора которого движется линейными движениями по набору декартовых или прямоугольных осей в направлениях X, Y и Z. Форма рабочего конверта образует прямоугольную фигуру. См. Рабочий конверт.

    Надежность
    Вероятность или процент времени, в течение которого устройство будет работать без сбоев в течение определенного периода времени или объема использования (R15.02). Также называется: время безотказной работы робота или среднее время наработки на отказ (MTBF).

    Восстановление
    Для обновления или модификации роботов в соответствии с пересмотренными спецификациями производителя. (R15.06)

    Удаленный режим
    Удаленный режим — это тип режима воспроизведения, в котором автоматическое выполнение программы робота инициируется с внешнего устройства (а не с обучающего пульта). В этом режиме использование обучающего пульта отключено.

    Повторяемость
    Мера того, насколько близко рука может повторно занять заданное положение.Например: после того, как манипулятор вручную помещен в определенное место, и это местоположение определено роботом, повторяемость определяет, насколько точно манипулятор может вернуться в это точное местоположение. Степень разрешения в системе управления роботом определяет повторяемость. В общем, воспроизводимость руки никогда не может быть лучше, чем ее разрешение. См. «Обучение и точность».

    Разрешение
    Количество шарнирного движения робота, необходимое для изменения положения на один счет.Хотя разрешение каждого датчика совместной обратной связи обычно является постоянным, разрешение конечной точки в мировых координатах не является постоянным для поворотных рычагов из-за нелинейности кинематики рычага.

    Поворотный шарнир
    Суставы робота, способные совершать вращательные движения.

    Оценка рисков
    Процесс оценки предполагаемого использования машины или системы на предмет прогнозируемых опасностей и последующего определения уровня риска, связанного с идентифицированными задачами.

    Снижение рисков
    Вторичный шаг в процессе оценки риска, который включает снижение уровня риска для идентифицированных задач путем применения мер по снижению риска с целью устранения или смягчения опасностей.

    Робот
    Перепрограммируемый многофункциональный манипулятор, предназначенный для перемещения материала, деталей, инструментов или определенных устройств посредством переменных запрограммированных движений для выполнения множества задач. Общие элементы, из которых состоит робот: контроллер, манипулятор и рабочий орган.См. Манипулятор, Контроллер и Рабочий орган.

    Система координат робота
    Система координат робота определяется в базовой оси робота, а точки в системе координат робота будут относиться к базе робота. Обратите внимание, что по умолчанию базовая система координат и система координат робота одинаковы. (см. рисунок справа)

    Робот-интегратор
    См. Интегратор.

    Язык программирования роботов
    Интерфейс между человеком-пользователем и роботом, который связывает человеческие команды с роботом.

    Робот для контроля предельного диапазона
    Следит за тем, чтобы рука манипулятора или его инструмент находились в обозначенной зоне безопасности

    Моделирование роботов
    Метод имитации и прогнозирования поведения и работы роботизированной системы на основе модели (например, компьютерной графики) физической системы. (R15.07)

    Рулон
    Вращение концевого эффектора робота в плоскости, перпендикулярной концу руки манипулятора.См. Pitch and Yaw.

    Поворотный шарнир
    Сустав, который скручивается, качается или изгибается вокруг оси.

    Поворотный векторный привод (RV)
    Торговая марка устройства понижения скорости, которое преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости, обычно используемое на большой (большей) оси. См. Cyclo Drive и Harmonic Drive.

    Вращательное движение
    Сустав, который скручивается, качается или изгибается вокруг оси. Примером этого является локоть человеческой руки.


    Гарантия
    Барьерное ограждение, устройство или защитная процедура, предназначенные для защиты персонала. (R15.06)

    Уровень полноты безопасности
    Уровень полноты безопасности (SIL) — это метод IEC для определения уровня производительности системы безопасности. SIL 2 соответствует уровню эффективности ISO «d», а SIL 3 соответствует уровню эффективности ISO «e». ISO 10218 допускает использование того и другого.

    Логическая схема безопасности
    Логическая схема безопасности контролирует критически важные для безопасности внешние устройства, такие как световые завесы и генерируемые FSU сигналы.Логическая схема безопасности программируется через интуитивно понятный пользовательский интерфейс, поддерживаемый подвесным пультом программирования Yaskawa. Это позволяет настраивать логические операции, такие как остановка манипулятора или выдача сигнала, если сервоприводы включены.

    Остановка с контролем безопасности
    Совместная функция, разработанная для обеспечения безопасного взаимодействия человека и робота. Только когда движение робота прекратится, безопасность человека войдет в рабочее пространство для совместной работы. Сервоприводы могут оставаться под напряжением в соответствии с остановкой категории 2 в соответствии с ISO 10218-1: 2011, 5.4. Оценка риска должна использоваться, чтобы определить, необходимы ли какие-либо дополнительные меры безопасности для снижения рисков в роботизированной системе.

    Робот SCARA
    Цилиндрический робот, имеющий два параллельных шарнирных соединения (горизонтально шарнирно сочлененных) и обеспечивающий податливость в одной выбранной плоскости. (ISO 8373) Примечание: SCARA является производным от селективно совместимой руки для роботизированной сборки

    Вторая исходная позиция
    Помимо «исходного положения» манипулятора, второе исходное положение можно настроить как контрольную точку для абсолютных данных.Начальное значение второго исходного положения — это исходное положение (где все оси находятся на импульсе 0). Вторую исходную позицию можно изменить.

    Режим безопасности
    Уровни режимов оператора на контроллерах роботов Yaskawa включают в себя: режим работы, режим редактирования, режим управления, режим безопасности и режим одноразового управления.

    Датчик
    Инструменты, используемые в качестве устройств ввода для роботов, которые позволяют ему определять аспекты, касающиеся окружающей среды робота, а также собственное позиционирование робота.Датчики реагируют на физические стимулы (такие как тепло, свет, звук, давление, магнетизм и движение) и передают результирующий сигнал или данные для измерения, управления или того и другого. (R15.06)

    Сенсорная обратная связь
    Переменные данные, измеряемые датчиками и передаваемые на контроллер в замкнутой системе. Если контроллер получает обратную связь, выходящую за пределы допустимого диапазона, значит, произошла ошибка. Контроллер отправляет роботу сигнал об ошибке.Робот вносит необходимые корректировки в соответствии с сигналом ошибки.

    Сервоуправление
    Процесс, с помощью которого система управления роботом проверяет, соответствует ли достигнутая поза робота позе, заданной при планировании движения, с требуемыми характеристиками и критериями безопасности. (ISO 8373)

    Серводвигатель
    Электроэнергетический механизм, используемый для движения или поддержания положения робота (например, двигатель, который преобразует электрическую энергию в движение робота) (R15.07). Двигатель реагирует на сигнал, полученный от системы управления, и часто включает энкодер для обеспечения обратной связи с контуром управления.

    Сервопак
    Электроэнергетический механизм переменного тока, управляемый с помощью логики, для преобразования энергии источника питания в форме синусоидальной волны в квадратную форму с широтно-импульсной модуляцией (ШИМ), подаваемую на двигатели для управления двигателем: скорость, направление, ускорение, замедление. и контроль торможения.

    Робот с сервоприводом
    Управление роботом с помощью сервосистемы с замкнутым контуром, в которой положение оси робота измеряется устройствами обратной связи и сохраняется в памяти контроллера.См. Замкнутую систему и Сервосистему.

    Сервосистема
    Система, в которой контроллер выдает команды двигателям, двигатели приводят в движение рычаг, а датчик энкодера измеряет вращательные движения двигателя и сигнализирует о величине движения обратно контроллеру. Этот процесс повторяется много раз в секунду, пока рука не переместится в требуемую точку. См. Сервоуправляемый робот

    .

    Функция обнаружения удара
    Обнаружение удара — это функция, поддерживаемая контроллером робота Yaskawa, которая снижает воздействие столкновения робота, останавливая манипулятор без какого-либо внешнего датчика, когда инструмент или манипулятор сталкиваются с периферийным устройством.

    Плечо
    Первую или вторую ось робота иногда называют осью плеча, поскольку она чем-то напоминает человеческое плечо. Это часто используется при описании гуманоидных систем или систем с двумя руками, таких как Yaskawa Motoman® SDA10D.

    SIL
    См. Уровень полноты безопасности

    Моделирование
    Графическая компьютерная программа, представляющая робота и его окружающую среду, которая имитирует поведение робота во время имитации запуска робота.Это используется для определения поведения робота в определенных ситуациях, прежде чем фактически дать команду роботу выполнить такие задачи. Рассматриваются следующие элементы моделирования: 3D-моделирование окружающей среды, эмуляция кинематики, эмуляция планирования пути и моделирование датчиков. См. Сенсор, Прямая кинематика и Робот.

    Сингулярность
    Конфигурация, в которой два шарнира манипулятора робота становятся коаксиальными (выровненными по общей оси). В особой конфигурации плавное следование по траектории обычно невозможно, и робот может потерять управление.Термин происходит от поведения матрицы Якоби, которая становится сингулярной (т. Е. Не имеет обратной) в этих конфигурациях.

    SLURBT
    SLURBT — это термины, которые Yaskawa Motoman использует для описания каждой оси робота для удобства. Определение каждого значения следующее:

    S — качели или вертлюги
    L — нижний рычаг
    U — верхняя рука
    R — повернуть на
    B — Колено
    Т — Твист

    Функция настройки мягкого лимита
    Функция настройки Softlimit — это функция для установки диапазона ограничения перемещения оси движения манипулятора в программном обеспечении.

    Контроль скорости и разделения
    Совместная функция, которая позволяет оператору и роботу работать в непосредственной близости друг от друга, гарантируя, что робот замедлится и остановится до возникновения ситуации контакта. Для безопасной реализации этой функции необходимо использовать функциональную безопасность и дополнительное оборудование для обнаружения. Оценка риска должна использоваться, чтобы определить, необходимы ли какие-либо дополнительные меры безопасности для снижения рисков в роботизированной системе.

    Сплайн
    Гладкая непрерывная функция, используемая для аппроксимации набора функций, которые однозначно определены на наборе подинтервалов. Аппроксимирующая функция и набор аппроксимируемых функций пересекаются в достаточном количестве точек, чтобы обеспечить высокую степень точности приближения. Назначение плавной функции — позволить роботу-манипулятору выполнить задачу без рывков.

    Сплайн Тип движения
    Расчетный путь, который выполняет робот, который может иметь параболическую форму.Сплайновое движение может также создавать кривую произвольной формы со смесью круглых и параболических форм.

    Системный интегратор
    См. Интегратор.


    Обучение
    Чтобы запрограммировать руку манипулятора, вручную направляя ее через серию движений и записывая положение в памяти контроллера робота для воспроизведения.

    Блокировка обучения
    Пока установлена ​​блокировка обучения, режим работы привязан к режиму обучения, и машины не могут воспроизводиться ни с помощью [СТАРТ], ни с внешнего входа.В целях безопасности всегда устанавливайте переключатель режима в положение «ОБУЧЕНИЕ» перед началом обучения.

    Режим обучения
    Режим контроллера робота, в котором робот-манипулятор программируется путем ручного управления им через серию движений и записи положения в память контроллера робота для воспроизведения. Промышленные роботы, у которых нет активной функции ограничения мощности и усилия, требуют использования трехпозиционного переключателя включения в режиме обучения.

    Подвеска Teach
    Портативный блок управления, который используется оператором для удаленного управления роботом при выполнении его задач.Движения записываются системой управления роботом для последующего воспроизведения. Современные промышленные роботы поставляются с подвесками для программирования, которые не только позволяют обучать роботов, но также поддерживают полнофункциональное программирование роботов и безопасный пользовательский интерфейс.

    Окно обучения
    Окно обучения — это экран пользовательского интерфейса на пульте программирования. Это окно содержит окно СОДЕРЖАНИЕ ЗАДАНИЯ, и в этом окне проводится обучение. Окно СОДЕРЖАНИЕ ЗАДАНИЯ содержит следующие элементы: номера строк, курсор, инструкции, дополнительные элементы, комментарии и т. Д.

    Распределительный луч
    Система обнаружения объектов, используемая в системе датчиков изображения робота. Точно сфокусированный луч света закреплен на одном конце, а детектор — на другом. Когда луч света прерывается, объект ощущается.

    Функция измерения времени
    Функция измерения времени измеряет время выполнения указанного раздела в задании или время вывода указанного сигнала.

    Инструмент
    Термин, используемый в широком смысле для определения рабочего устройства, установленного на конце манипулятора робота, такого как рука, захват, сварочная горелка, отвертка и т. Д.См. «Рука», «Захват» и «Рабочий орган».

    Инструмент и рука Помехи
    В системе с одним контроллером и несколькими манипуляторами функция проверки взаимодействия инструмента и рычага может использоваться для обнаружения возможных помех и предотвращения столкновений во время работы. Можно проверить следующие три шаблона:

    • Плечо против руки

    • Рычаг против инструмента

    • Инструмент против инструмента

    Интерференция проверяется с помощью цилиндра, который немного больше, чем рычаг или инструмент.На обоих концах цилиндра помещается сфера. Если цилиндр и сферы одного манипулятора во время движения контактируют с цилиндрами другого манипулятора, манипуляторы останавливаются из-за обнаружения помех.

    Центр инструмента (TCP)
    Центральная точка инструмента (TCP) определяет вершину текущего инструмента, как определено относительно фланца инструмента. Например, для сварочного робота TCP обычно определяется на кончике сварочного пистолета. После определения и настройки TCP движение робота будет определено относительно этого кадра (т.е., вращение в направлении Rx вызовет вращение вокруг оси X, и позиции будут обучаться в этом кадре.

    Контрольная точка инструмента
    См. Центр инструмента

    .

    Координаты инструмента
    Когда инструмент, прикрепленный к роботу, перемещается, движется его система координат инструмента относительно фиксированной системы координат, например мировых координат. Как правило, координаты инструмента не совпадают с мировыми координатами XYZ.

    Рама для инструментов
    Система координат, прикрепленная к рабочему органу робота (относительно базовой рамы).

    Датчик касания
    Чувствительное устройство, которое иногда используется с рукой или захватом робота, которое определяет физический контакт с объектом, тем самым давая роботу искусственное ощущение прикосновения. Датчики реагируют на контактные силы, возникающие между ними и твердыми предметами.

    Построение траектории (расчет)
    Вычисление функций движения, которые позволяют плавно контролировать движение суставов.

    Преобразователь
    Устройство, преобразующее энергию из одной формы в другую.Обычно это устройство, преобразующее входной сигнал в выходной сигнал другой формы. Его также можно рассматривать как устройство, которое преобразует статические сигналы, обнаруженные в окружающей среде (например, давление), в электрический сигнал, который отправляется в систему управления роботом.


    Время работы
    Период времени, в течение которого робот или производственная линия работают или готовы к работе, в отличие от времени простоя.

    Настройка координат пользователя
    Координаты пользователя определяются тремя точками, которые были обучены манипулятору с помощью осевых операций.Этими тремя определяющими точками являются ORG, XX и XY, как показано на диаграмме ниже. Эти три точки позиционных данных регистрируются в пользовательском файле координат. ORG — это исходное положение, а XX — точка на оси X. XY — это точка со стороны оси Y от пользовательских координат, которые были обучены, а направления осей Y и Z определяются точкой XY.

    Пользовательская система координат
    Пользовательская система координат — это любая контрольная точка, которую пользователь определил для своего приложения.Он часто прикрепляется к объекту, например к поддону, и позволяет пользователю обучать точкам относительно этого объекта. Например, набор положений может быть обучен относительно пользовательской системы координат, прикрепленной к поддону, а затем легко перенесен в другую пользовательскую систему координат на другом поддоне. Это позволяет эффективно повторно использовать позиции. См. Также «Настройка координат пользователя

    ».


    Ручной вакуумный стакан
    Конечный эффектор для руки робота, который используется для захвата объектов легкого и среднего веса с помощью всасывания для манипуляций.К таким предметам может относиться стекло, пластик; и т. д. Обычно используется из-за его достоинств, заключающихся в уменьшении скольжения предметов, когда они находятся в пределах досягаемости вакуумной чашки. См. «Концевой эффектор».

    Управление зрением
    Система управления, в которой траектория робота изменяется в ответ на ввод от системы технического зрения.

    Датчик технического зрения
    Датчик, который определяет форму, местоположение, ориентацию или размеры объекта с помощью визуальной обратной связи, например, телекамеры.


    Рабочий пакет
    Набор всех точек, до которых манипулятор может добраться без вторжения. Иногда форма рабочего пространства и положение самого манипулятора могут ограничивать рабочий диапазон.

    Рабочий конверт (космос)
    Объем пространства, в котором робот может выполнять поставленные задачи.

    Работа в исходном положении
    Исходное рабочее положение является ориентиром для операций с манипулятором.Это предотвращает взаимодействие с периферийным устройством, гарантируя, что манипулятор всегда находится в пределах установленного диапазона в качестве предварительного условия для таких операций, как запуск линии. Манипулятор можно переместить в заданное рабочее исходное положение с помощью пульта программирования или ввода сигнала с внешнего устройства. Когда манипулятор находится в непосредственной близости от исходного рабочего положения, включается сигнал рабочего исходного положения.

    Заготовка
    Любая деталь, которая обрабатывается, совершенствуется или изготавливается до того, как станет готовым продуктом.

    Рабочее пространство
    Объем пространства, в котором робот может выполнять поставленные задачи.

    Мировые координаты
    Справочная система координат, в которой рычаг манипулятора движется линейными движениями по набору декартовых или прямоугольных осей в направлениях X, Y и Z. Форма рабочего конверта образует прямоугольную фигуру. См. Прямоугольные координаты.

    Мировая модель
    Трехмерное представление рабочей среды робота, включая объекты, их положение и ориентацию в этой среде, которое хранится в памяти робота.Поскольку объекты обнаруживаются в окружающей среде, система контроллера робота постоянно обновляет модель мира. Роботы используют эту модель мира, чтобы определять свои действия для выполнения поставленных задач.

    Запястье
    Набор поворотных шарниров между манипулятором и рабочим органом робота, которые позволяют ориентировать рабочий орган по отношению к обрабатываемой детали. В большинстве случаев запястье может иметь степени свободы, которые позволяют ему захватывать объект с ориентацией по крену, тангажу и рысканью.См. «Рука», «Рабочий орган», «Крен», «Шаг», «Рыскание» и «Деталь».

    Запястье [вторичная ось]
    Набор взаимосвязанных звеньев и механических соединений между рычагом и рабочим органом, который поддерживает, позиционирует и ориентирует рабочий орган. (ISO 8373)


    Рыскание
    Вращение рабочего органа в горизонтальной плоскости вокруг конца руки манипулятора. Боковое движение по оси. Смотрите Roll and Pitch.

    Лучшие игрушки-роботы, которые обучают детей программированию и STEM

    Дети непостоянны, поэтому родителям легко потратить кучу денег на, казалось бы, отличные игрушки, которые быстро попадают в мусор, когда их развернули и выбросили.Вместо этого посмотрите на постоянно развивающиеся игрушки-роботы, которые вы можете получить для своего начинающего изобретателя. Лучшие роботы для детей знакомят их с концепциями STEM, активируют их внутреннего «создателя» и даже обучают программированию и робототехнике для детей. Кроме того, эти игрушечные роботы могут помочь детям овладеть когнитивными навыками, такими как критическое мышление и решение проблем, а также им весело собирать их и заставлять работать.

    Выбирая роботов-программистов, родители должны убедиться, что они соответствуют возрасту, прежде всего, потому что, если вы получите своему потомству что-то, что выглядит действительно хорошо, но слишком продвинуто, они только разочаруются.Для некоторых игрушек для программирования требуются приложения и экраны, а для других — нет, поэтому выберите тот вариант, который лучше всего подходит для вас и вашего стиля воспитания. Вы обнаружите, что некоторые из наших игрушек-роботов имеют модульную конструкцию, что означает, что они хорошо сочетаются с существующими игрушками, такими как Lego, поэтому их срок годности по определению будет больше.

    Лучшие игрушки-роботы для малышей и дошкольников

    Это не готовый робот. Но это только повышает ставки. Этот блестящий набор Brio ставит перед инженерами задачу создать роботов, автомобили, грузовики или единороги, используя 67 компонентов и инструментов, а затем воплотить его в жизнь с помощью диктофона для уникальных звуков.Это обучение STEM в сочетании с неограниченной игрой без экрана.

    Никаких экранов не требуется: дошкольники поворачивают каждый диск на хвосте гусеницы, и она идет прямо, поворачивает налево, поворачивает направо, играет музыку и издает дурацкие звуки.

    Эти 57 деталей дают вашему изобретателю все инструменты, необходимые для создания роботов, собак, тележек или велосипедов.Или роботизированную тележку для собак, которая тоже является самолетом. Все идеально подходит для маленьких ручек, им легко пользоваться и манипулировать. К тому же этот набор совершенно неограниченный.

    Дайте ребенку чистый холст, и что произойдет? Они заставляют работать свое воображение. В этом случае они получают прозрачную доску для занятий, 120 толстых пластиковых болтов, двустороннюю дрель, отвертку, комбинированный ключ, два сверла и 10 карточек с выкройками.А затем они приступают к работе, используя свою крупную моторику и навыки критического мышления, чтобы просверлить болты в пазах на доске, чтобы создать любой узор, который они хотят.

    С этими кубиками дети построили робота своей мечты. Это маленькие программные блоки внутри маленьких аппаратных блоков, и поскольку каждый блок имеет особую функцию, то, как дети собирают своего робота, меняет его поведение. Каждый раз.

    Дети узнают о гравитации и балансе, играя с этими мягкими магнитными блоками из пенопласта, которые защелкиваются, вращаются на 360 градусов и всегда притягиваются друг к другу.Это воплощение неограниченной игры без экрана. Бонус: их можно мыть в посудомоечной машине.

    Познакомьте ваших дошкольников с основами инженерного искусства, в котором они используют настоящую рабочую, безопасную для детей игрушечную дрель, чтобы построить пожарную машину, в комплекте с навесной лестницей и топперами для огня и воды.

    Этот конкретный комплект STEM включает 130 блоков уникальной формы; включая два двигателя, один датчик и все необходимое для бесконечной игры.Дети могут создавать заранее спроектированных роботов или создавать своих собственных. Дети используют приложение, чтобы заставить робота что-то делать, например двигаться, барабанить, танцевать, издавать звуки и светиться.

    Поистине инновационная мраморная дорожка для младшего возраста, она состоит из 14 частей из магнитной пены, поэтому маленькие дети могут создать мраморную дорожку для своих четырех шариков. Они могут либо следить за карточками занятий, либо использовать свое воображение.

    Этот набор не только дает вашим детям возможность познакомиться с интерактивными домашними животными.Но когда они находятся в режиме привязки, дети следуют задачам по написанию сборников рассказов, чтобы поиграть в прятки с тварями, попросить Боппер схватить свою морковку или толкнуть качели.

    Это забавное морское существо помогает малышам с их зрительно-моторной координацией, когда они вставляют компоненты в осьминога. Они могут использовать его в математическом режиме, изучая базовые навыки, такие как сложение и вычитание. В музыкальном режиме осьминог позволяет детям сочинять свою музыку, добавляя или удаляя различные инструменты.«Они узнают об определенных музыкальных звуках и обнаруживают ритмические паттерны.

    Как и первая версия Botley, его младший брат позволяет детям программировать без экрана. Но он загружен довольно крутыми новыми функциями: он имеет ночное видение и может выполнять повороты под углом 45 градусов. В новом Botley расширены стили кодирования, такие как музыка, свет и движение, и дети могут запрограммировать Ботли на выполнение последовательностей из 150 шагов и, среди прочего, превратить Ботли в привидение или машину.

    Дети собирают роботов, соединяя кубики вместе, и управляют творениями через приложение. Внутри каждого кублета есть программное обеспечение с определенной функцией, поэтому они меняют поведение в зависимости от того, как дети их собирают.

    Еще один звездный набор кодирования без экрана, в который входит бутерброд с арахисовым маслом и желе по имени Сэмми. Дети выкладывают карты физического кодирования, чтобы Сэмми мог двигаться, зажигаться, воспроизводить звуки и делать свои дела.И они изучают основы кодирования.

    Дети создают простых, но полностью функциональных игрушечных роботов, летающих или приближающихся, у которых есть движущиеся части, колеса и шестерни, и они рассказывают забавную небольшую историю об отважных детях. Это надежный способ без экрана для дошкольников узнать, как работают машины.

    Мико — любитель истории, новичок и радиостанция как одно целое.Маленький соответствующий возрасту бот учит детей истории, рассказывает им новости на понятном им языке, играет музыку, рассказывает истории и даже совершает лунную походку. Он растет вместе с вашим ребенком и приспосабливается к нему, то есть запоминает, что ему нравится и что не нравится. И вы можете использовать бота, чтобы позвонить и поговорить с вашим ребенком. Имеет распознавание лица и голоса.

    Вероятно, лучший для детей от 4 лет и старше, этот уникальный и красочный набор позволяет им создавать игровые площадки и игровые площадки для Hexbugs.Вы спросите, что такое Hexbugs? Роботизированные насекомые. Городские дизайнеры используют желеобразные стены, гусеницы и уникальные препятствия, чтобы придумать для своих движущихся жуков непростые условия.

    Лучшие детские игрушки-роботы и детская робототехника

    Это великолепный классический игрушечный поезд, но с умными функциями для сообразительных детей. Дети младшего возраста играют без экрана, как с обычным игрушечным поездом, и учатся управлять навигацией и скоростью умного поезда с помощью цветных пластиковых плиток, которые защелкиваются на рельсах и сходят с них.Если вы все же выберете экраны, загрузите приложение, и они действительно смогут развлечься с поездом, создавая собственные команды.

    Сначала дети собирают робота. Затем они кодируют его движения, нажимая кнопки кодирования на колесе кодирования. Он может двигаться вперед, назад и вращаться на 360 градусов. И как только это будет освоено, робот сможет переходить к более сложным задачам, таким как бросание, подъем, удары ногами или рисование.

    Эксперименты работают, если вы следуете указаниям.А это, в свою очередь, требует внимания к деталям, навыков аудирования, восприимчивых языковых навыков и навыков рассуждения. Этот научный набор заставляет их делать это, и они, в свою очередь, сгибают металл с водой, создают исчезающую пробирку и делают поплавок для монеты. Короче говоря, наука становится просто супер-забавой.

    Вы наверняка слышали аргумент, что вонь и камни — лучшие STEM-игрушки. Этот комплект, без сомнения, подчеркивает это.Исследователи проводят 15 экспериментов: запускают переработанную ракету, делают собственную солнечную печь и печь зефир, а также узнают об устойчивых культурах растений. И по пути они могли оценить щедрость земли.

    Это похоже на настоящий мяч. Но это намного круче. Оснащенный гироскопом, акселерометром и яркими светодиодами, этот мяч можно использовать в качестве игрового контроллера через приложение Sphero. Кроме того, дети могут водить его, играть в игры и программировать, также используя приложение.Новички начинают с использования основных команд перетаскивания кода, а те, кто ищет дополнительные задачи, могут запрограммировать мяч с помощью JavaScript и Swift.

    Еще один выдающийся комплект, он учит детей науке о Земле, когда они создают дуэльные водные торнадо, строят извергающийся вулкан, выращивают кристалл и создают торнадо. Они следуют указаниям и видят причину и следствие в действии.

    Дети получают 258 деталей, из которых они собирают 20 различных моделей.Они сосредоточены на конкретных темах, включая морские аппараты, подводные аппараты, плавучесть, энергию ветра, вращение, шестерни, преобразование энергии, центр тяжести, баланс, пневматику, гидравлику, статику и оптику? Звучит круто? Мы так думаем. Они строят такие вещи, как гидравлический подъемник, роботизированный манипулятор, пневматический амортизатор, да, даже палку для селфи.

    Создав собственный фонарик, дети узнают, как движение преобразуется в энергию с помощью электромагнитной катушки.Другими словами, они учатся зажигать свет.

    Самое замечательное в этом наборе то, что он совместим с кубиками Lego, которых, как вы знаете, у ваших детей есть множество в доме. Дети управляют роботом с помощью приложения и строят 15 разных роботов. Или они могут заниматься фристайлом и создавать свои собственные, отличное сочетание творчества и робототехники.

    Поклонники автомобилей с дистанционным управлением обязательно оценят этот крутой вездеход.Почему? Потому что он готов к выходу прямо из коробки и повышается вместе с вашим ребенком. Новички просто используют приложение Sphero, чтобы управлять RVR и указывать направление. Более опытные дети в возрасте от 8 лет и старше могут писать код на JavaScript. Эта штука работает практически на любой местности, а ее бортовые датчики включают датчик цвета, датчик освещенности, ИК, магнитометр, акселерометр и гироскоп.

    Ученики начальной школы используют iPad в сочетании с портативными элементами, чтобы научиться подбирать фигуры на экране, решать творческие головоломки, практиковаться в математике без ограничений и оттачивать свои языковые навыки.Они могут играть в одиночку или в группах. Самый крутой аспект этого набора для кодирования — это возможность составлять из деревянных кусочков пазла сложные формы.

    Дети используют проводящее тесто семи цветов, один контейнер с изоляционным тестом, светодиоды, пьезоэлектрический зуммер и механический зуммер, чтобы создавать мягкие, мягкие и удивительно странные роботизированные игрушки своей мечты. Батарейный блок 4-AA обеспечивает электричество через проводящее тесто и питает светодиоды и двигатели.

    Мы не совсем уверены, почему это комплект для девочек. Это для всех, и точка. Вы собираете компьютерный комплект с нуля и получаете работающее устройство. В комплект входят клавиатура, мышь, Raspberry Pi, 8-гигабайтная SD-карта с Raspbian OS, Scratch, Python и Minecraft, а также провода, схемы, резисторы, кнопки, светодиоды, макетная плата. Он поддерживает Wi-Fi, но работает без него.

    Этот странно выглядящий чувак состоит из 390 соединяемых деталей, шести серводвигателей, двух светодиодных глаз, цветового датчика и обновленных механизмов переключения передач.Просто загрузите приложение, а затем используйте его, чтобы запрограммировать свет робота, чтобы он мигал или заставлял его танцевать по команде, следуя определенной последовательности. Дети учатся следовать указаниям и решать проблемы, когда что-то не работает, а бот не делает то, что должен делать.

    Лучшие наборы робототехники Lego

    Этот набор из 324 деталей — это два по цене одного: автомобиль с дистанционным управлением трансформируется в гоночную машину. Когда они закончили сборку, строители используют пульт дистанционного управления, чтобы он покорял пересеченную местность и тянул высокоскоростные колеса, повороты и вращения.

    Вместо одноразового (в основном) набора Lego дети постоянно работают с этим набором. Они строят трех дроидов из «Звездных войн», управляемых приложением: R2-D2, дроида Гонка и дроида Мышь, каждый со своими личностями и навыками. Затем они используют приложение, чтобы запрограммировать дроидов на выполнение все более сложных миссий. Подходит для детей от восьми лет и старше.

    Каждый продукт на сайте Fatherly выбирается нашими редакторами, писателями и экспертами независимо друг от друга.Если вы перейдете по ссылке на нашем сайте и что-то купите, мы можем заработать партнерскую комиссию.

    Ой! Пожалуйста, попробуйте еще раз.

    Спасибо за подписку!

    Boston Dynamics представляет Stretch: нового робота, предназначенного для перемещения ящиков на складах

    Boston Dynamics наиболее известна своей роботизированной собакой Spot, машиной, предназначенной для работы в различных средах, от морских нефтяных вышек до глубоких подземных шахт.Но в последние годы компания уделяет все больше внимания логистике, и сегодня представляет нового робота, предназначенного только для одного применения: перемещение ящиков на складах.

    Робот называется Stretch и выглядит относительно скучно для творения Boston Dynamics. Он не создан по образцу людей или животных, а нацелен на то, чтобы быть максимально практичным. Он имеет квадратную мобильную базу, содержащую набор колес, «мачту восприятия» с камерами и другими датчиками, а также огромную роботизированную руку с семью степенями свободы и набор присосок на конце, который может захватывать и перемещать ящики до 23 килограммы (50 фунтов) в весе.

    Что связывает Stretch с другими машинами Boston Dynamics, так это мобильность. Обычно, когда оборудование для автоматизации устанавливается на складах, система крепится болтами в одном месте, и вокруг нее моделируется рабочий процесс. Stretch, для сравнения, разработан для того, чтобы скользить в любое существующее рабочее место, где он может быть полезен при загрузке или разгрузке товаров.

    «Все зависит от проблемы дня».

    «Вот что замечательно в этой системе: она может обеспечить автоматизацию сред, в которых нет инфраструктуры автоматизации», — сказал The Verge вице-президент Boston Dynamics по развитию бизнеса Майкл Перри.«Вы можете воспользоваться этой возможностью, и вы можете переместить ее в кузов грузовика, вы можете переместить ее в проходы, вы можете переместить ее рядом с вашими конвейерами. Все зависит от того, в чем проблема сегодняшнего дня ».

    Stretch может работать от батарей в течение восьми часов за раз или переключаться на привязанное питание. Изображение: Boston Dynamics

    Это позволит Boston Dynamics ориентироваться на клиентов, которые в противном случае избегали бы автоматизации как слишком дорогой или трудоемкой для интеграции, — говорит Перри.Около 80 процентов складов в мире не имеют оборудования для автоматизации, что дает компании значительный доступный рынок. Но у Stretch пока нет ценника, и вполне возможно, что для предприятий с низкой рентабельностью робот не стоит хлопот, независимо от того, насколько он мобильный.

    Boston Dynamics проявляет интерес к логистике с 2019 года, когда она приобрела Kinema Systems, компанию, которая производит программное обеспечение машинного зрения для роботов на складах. Затем он разработал колесного робота под названием Ручка, который мог перемещать ящики с помощью роботизированной руки, балансируя себя с помощью огромного качающегося противовеса, такого как хвост.

    Перри говорит, что Handle имеет «подходящую площадь и зону действия» для складских помещений, но не может работать достаточно быстро. Рука робота прикреплена непосредственно к его основному корпусу, что означает, что вся машина должна перемещаться с каждым грузом. Для сравнения, рука Stretch свободно поворачивается благодаря некоторым умным (и запатентованным) противовесам, спрятанным внутри ее квадратного основания.

    «Это действительно секретный соус», — говорит Перри. «Эта база способна выдерживать инерционную силу руки и коробки, раскачивающейся с большим весом, без необходимости полагаться на стальную пластину весом в несколько тысяч килограммов, прикрученную к полу.”

    Вакуумные захваты Stretch означают, что они могут работать только с коробками с плоскими поверхностями, что ограничивает их полезность на определенных складах. Изображение: Boston Dynamics Происхождение

    Stretch можно проследить до двуногого робота Atlas от Boston Dynamics, который может так плавно балансировать свой вес, что может бегать, прыгать, сальто и т. Д. «Атлас, поднимающий коробку, — это не просто вытягивание рук и их перемещение, а координация бедер, ног и туловища», — говорит Перри.«Многое из того же дизайнерского мышления вошло в Stretch».

    В результате Boston Dynamics утверждает, что Stretch может перемещать до 800 ящиков в час, что сопоставимо с производительностью человека-сотрудника. Аккумуляторы большой емкости означают, что Stretch может работать в течение восьми часов подряд, прежде чем потребуется подзарядка.

    Однако к такой пропускной способности следует относиться скептически. Заставить роботов работать на складах невероятно сложно из-за огромного разнообразия этих пространств.Рабочие процессы могут меняться каждый день по мере того, как приходят и уходят разные товары, и часто ценится гибкость. Неспособность машин справиться с этими проблемами до сих пор привела к динамике автоматизации по принципу «все или ничего». Вы либо переделываете весь склад, чтобы он был достаточно регулярным, чтобы его могли понять машины, либо вы остаетесь с людьми, хозяевами неизвестного.

    Boston Dynamics заявляет, что Stretch сможет преодолеть этот разрыв. Компания заявляет, что роботом может управлять любой человек, прошедший всего несколько часов обучения, и что его мобильная база означает, что он может размещаться в пространствах, предназначенных для людей.Это будет работать? Мы узнаем об этом только тогда, когда Stretch возьмется за дело. Boston Dynamics заявляет, что в настоящее время ищет клиентов для пилотного тестирования Stretch и планирует коммерческое внедрение в 2022 году.

    Система

    Rutgers — еще один шаг на пути к автоматизированной упаковке — ScienceDaily

    Ученые-компьютерщики Rutgers использовали искусственный интеллект для управления роботизированной рукой, которая обеспечивает более эффективный способ упаковки коробок, экономя время и деньги предприятий.

    «Мы можем создавать недорогие автоматизированные решения, которые легко развертывать.Ключ состоит в том, чтобы сделать минимальный, но эффективный выбор оборудования и сосредоточиться на надежных алгоритмах и программном обеспечении », — сказал старший автор исследования Костас Бекрис, доцент кафедры компьютерных наук Школы искусств и наук Университета Рутгерса в Нью-Брансуике.

    Бекрис, Абдеслам Булариас и Цзинджин Ю, оба доцента информатики, сформировали команду, чтобы интегрировать несколько аспектов проблемы упаковки роботов с помощью оборудования, трехмерного восприятия и надежного движения.

    Рецензируемое исследование ученых было недавно опубликовано на Международной конференции IEEE по робототехнике и автоматизации, где оно стало финалистом премии за лучшую работу в области автоматизации. Исследование совпадает с растущей тенденцией развертывания роботов для выполнения логистических, розничных и складских задач. Развитие робототехники ускоряется беспрецедентными темпами благодаря алгоритмам машинного обучения, которые позволяют проводить непрерывные эксперименты.

    На этом видео на YouTube показан робот-манипулятор Kuka, который плотно упаковывает предметы из бункера в коробку с заказом на доставку (скорость в пять раз выше фактической).

    Плотная упаковка продуктов, собранных из неорганизованной стопки, остается в основном ручной задачей, хотя это критически важно для эффективности склада. По мнению научной группы Рутгерса, автоматизация таких задач важна для конкурентоспособности компаний и позволяет людям сосредоточиться на менее черной и физически сложной работе.

    Исследование Рутгерса было сосредоточено на помещении предметов из мусорного ведра в небольшую транспортировочную коробку и их плотном расположении. Для робота это более сложная задача, чем просто взять объект и бросить его в ящик.

    Исследователи разработали программное обеспечение и алгоритмы для своей роботизированной руки. Они использовали визуальные данные и простую присоску, которая служит пальцем для толкания предметов. В результате система может опрокидывать объекты, чтобы получить желаемую поверхность для их захвата. Кроме того, он использует данные датчиков, чтобы притягивать объекты к целевой области и сближать объекты. Во время этих операций он использует мониторинг в реальном времени для обнаружения и предотвращения потенциальных сбоев.

    Поскольку исследование было сосредоточено на упаковке объектов в форме куба, следующим шагом будет изучение упаковки объектов различных форм и размеров.Еще один шаг — изучить автоматическое обучение роботизированной системы после того, как ей будет дана конкретная задача.

    История Источник:

    Материалы предоставлены Университетом Рутгерса . Примечание. Содержимое можно редактировать по стилю и длине.

    .

    Похожие записи

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *