Как правильно эксплуатировать роботизированную коробку передач: 6 правил, о которых мало кто знает :: Autonews

Содержание

Как правильно обслуживать роботизированную КПП

Механическую коробку переключения передач с автоматическим управлением обычно называют роботизированной. У каждого автомобильного концерна есть в арсенале такая разновидность коробки передач. Создавая роботизированную КПП, компании преследовали цель занять привлекательную рыночную нишу между дешевой МКПП и дорогой АКПП. 

Роботизированная коробка передач (КПП) на легковых автомобилях у каждого производителя имеет свое название: Quickshift («Рено»), 2-tronic («Пежо»), Allshift, Twin Clutch SST, Sporttronic («Мицубиси»), Easytronic («Опель»), Durashift EST («Форд»), Dualogic, Speedgear («Фиат»), MultiMode, SMT («Тойота»), i-Shift («Хонда»), SensoDrive, EGS или BMP («Ситроен»), Selespeed («Альфа Ромео»), Automatic Stickshift, DSG («Фольксваген»), Sequentronic («Мерседес-Бенц»), SMG/SSG («БМВ»), S-Tronic («Ауди»), PDK («Порше»).   

Принцип работы  роботизированной коробки.  

Роботизированная КПП состоит из механической коробки передач, оборудованной исполнительными механизмами и блоком управления.

Блок управления считывает информацию либо с датчиков вращения коленчатого вала, либо с датчика скорости и, при необходимости, осуществляет переключение передач посредством гидравлического либо электрического исполнительного механизма. Вот почему «роботроник» иногда классифицируется как «автомат» – при переключении передач вам не надо выжимать сцепление. Однако это не совсем верно.   

Дело в том, что отсутствие педали сцепления в салоне не исключает самого диска сцепления из всего механизма. Типичная проблема всех роботизированных коробок заключается в разрыве потока мощности при переключении передач, что порой выливается в неприятные рывки при переключении. 

Казалось бы, подобная проблема существует и в МКПП, но не следует сбрасывать со счетов человеческий фактор. Человек, управляющий автомобилем с МКПП, способен быстро подстраиваться под любую дорожную ситуацию, оценивая ее наперед, и делать переключение передач практически незаметным. 

  Различные компании используют разные настройки для «роботроников». Например, фирма Opel устанавливает на свои модели роботизированную КПП под названием Easytronic, которая обеспечивает максимально комфортное переключение передач при спокойном вождении и вызывает дискомфорт при активной езде.   

  Ford устанавливает Durashift специально для любителей быстрой, агрессивной езды, но… в условиях города, медленного передвижения в пробках, в отличие от «роботроников». Кстати, «роботроник» позволяет тормозить двигателем, в отличие от автоматической коробки. Для водителей, любящих держать процесс поездки под контролем, такая функция просто незаменима. Также роботизированная КПП позволяет переключать передачи в ручном режиме, что делает процесс езды более динамичным.   

Основные проблемы «роботов» 

  Изначально роботизированные коробки устанавливались на автомобили класса «B», такие как Opel Corsa, Ford Fiesta и т.д. Сейчас сфера применения роботизированных КПП значительно расширилась. Теперь «роботроники» устанавливаются на автомобили гольф-класса – Ford Focus, VW Golf и многие другие, а также на компактные мини-вэны и кроссоверы.

Для потребителя, не располагающего достаточной суммой денег на покупку автомобиля с АКПП и не желающего «путаться в педалях», роботизированная коробка кажется просто незаменимой.   

Впрочем, все виды коробок передач имеют свою «ахиллесову пяту», в том числе и роботизированная. Из-за ее схожести с МКПП есть проблема замены диска сцепления. С другой стороны, сам процесс замены диска сцепления не намного сложнее замены сцепления в механической коробке. 

Еще одна актуальная проблема роботизированных коробок передач – стабильная работа контактов. Система управления «роботроником» имеет массу контактов, разъемов, а также электрические приводы. При нарушении одного из контактов «роботроник» перестает функционировать. Подобная остановка коробки приводит к тому, что переключение передач становится невозможным. Крайне неприятно, если такое случилось не в нейтральном положении «роботроника». При такой остановке коробки буксировать автомобиль нельзя, придется вызывать эвакуатор и транспортировать машину к месту ремонта.

 

  Помимо перечисленных проблем у роботроников бывают сбои в системной плате. Подобная проблема «лечится» перепрошивкой чипа. Остальные проблемы схожи с проблемами механической коробки передач: при большом пробеге изнашиваются синхронизаторы, иногда требуются настройка сцепления, регулировка тяги. Все эти проблемы легко устраняются в специализированном автосервисе (и сравнительно недорого). В принципе глобальных проблем в процессе эксплуатации роботизированных коробок передач не встречается.  

Особенности обслуживания и эксплуатации 

Независимые СТО предлагают свои услуги по ремонту трансмиссии с учетом объективной ситуации местного рынка. А это значит, что у новосибирских мастеров автосервиса накоплен опыт обслуживания преимущественно автоматических коробок передач, вариаторов и, конечно же, классической «механики». 

«Подержанные машины с роботизированными коробками поступают в Россию в основном из Западной Европы, – говорит Константин Зайцев, управляющий автосервисом «Мастерская по ремонту АКПП». – По таким машинам пока еще недостаточно информации, на рынке их мало. К нам эти машины поступают в основном со вторичного рынка, и их пока еще немного в Новосибирске». 

Однако Константин Зайцев упомянул в числе наиболее часто встречающихся «болезней» роботизированных коробок проблемы с электронным блоком – тем самым, который руководит работой сцепления. 

В силу объективных причин, на базе которых формируется рынок автомобилей Новосибирска, дилерские автосервисы имеют значительно больший опыт ремонта машин с роботизированными коробками передач. 

  «Многое зависит от того, насколько грамотно водитель управляет машиной с роботизированной коробкой, – рассказывает Андрей Владимиров, заместитель начальника СТО сервисного центра «Сибтрансавто Новосибирск», официального дилера Opel, Chevrolet. – «Робот» управляет сцеплением, с его помощью происходит включение/выключение сцепления, и поэтому, если водитель не выключает передачу, а стоит на светофоре с включенной передачей, у его автомобиля в итоге быстро изнашиваются диски сцепления.

То есть это происходит от неправильной эксплуатации и незнания особенностей работы роботизированной КПП».   

Несмотря на то что общий принцип работы коробок передач – «роботов» схож, каждый производитель выпускает на рынок свой собственный, немного отличный от других вариант этого узла автомобиля. Поэтому ремонт роботизированных коробок передач требует знаний всех рекомендованных производителем технологий, а также наличия необходимого оборудования и одобренных изготовителем запасных частей и расходных материалов. 

В гарантийный период диски сцепления чаще всего меняются за счет дилера, а по истечении срока гарантии – за счет владельца автомобиля. Поэтому владельцам таких машин рекомендуется ремонтировать роботизированные коробки в постгарантийный период у дилера, так как все запчасти в данном случае точно будут оригинальными, с завода-изготовителя – это значительно увеличит ресурс «робота». 

  Еще раз напомним, что современная роботизированная КПП  буквально нашпигована электроникой. Ремонт большинства из них порой невозможно выполнить без дилерского сканера. Или же, устранив механическую поломку, без необходимого дилерского оборудования нельзя выполнить электронное перепрограммирование коробки передач. Если этого не сделать – она опять выйдет из строя.   

Владельцам автомобилей с роботизированной коробкой передач следует помнить, что «робот» – это, скорее, усовершенствованная электроникой «механика». Такие машины имеют свои особенности эксплуатации, которые следует неукоснительно соблюдать. 

 

http://www.auto-sib.com/remont/detail/7522.html

Как правильно управлять роботизированной коробкой передач. Коробка передач робот, что это такое и как она работает

Любой из автолюбителей, сделавший выбор в пользу авто с роботизированной коробкой переключения передач, почти сразу задается вопросом: как управлять роботизированной коробкой передач?

Следует понимать, что роботизированная КПП – это, по большому счету, классическая механическая коробка, в состав которой включен небольшой электроблок, что осуществляет управление переключением передач и сцеплением.

Такие коробки роботизированного типа обладают рядом примечательных преимуществ: они надежны, комфортны и легки в эксплуатации, а также характеризуются низким расходом топлива.

На сегодняшний день практически каждый из производителей автомобилей имеет в своем модельном ряду виды, укомплектованные роботизированными КП. При этом любым заводом-изготовителем используются своя собственная уникальная технология и особое наименование.

Итак, чтобы разобраться, как правильно ездить на «роботе», и как осуществляется управление роботизированной коробкой, рассмотрим её более детально.

Следует понимать, что «робот» — это ветвь в истории эволюции механических КП. Специалисты также называют роботизированные коробки передач гибридом механической КП и автоматической. Благодаря тому, что роботизированный механизм, автоматизированный электроблоком, начал управляться актуаторами-сервоприводами, некоторые характеристики таких КПП возросли.

Существуют роботизированные КП с ручными режимами. Некоторые разновидности «роботов» вообще позволяют эксплуатацию в 3-х различных режимах: автоматическом, полумеханическом, ручном. В первом случае вмешательство водителя в процесс переключения передач не требуется. Во втором случае водитель сможет самостоятельно контролировать сцеплением. В третьем же случае все управление ложится на плечи водителя.

Если вы обожаете быструю езду и ярый поклонник драйва, то идеальным вариантом будет выбор «кулачковой» роботизированной КП, так как она является наиболее быстрой из всех других «роботов». Скорость переключения одной передачи составляет порядка 0,1-0,15 сек. Автомобили с такого вида коробкой снабжаются педалью сцепления, хотя её применение требуется только для того, чтобы тронуться с места. Дальше процесс переключения происходит аналогично процессу переключения в гоночных мото, то есть без использования сцепления.

Роботизированные коробки оснащаются электро- или гидроприводами сцеплений. Для первого в роли составных элементов выступают электродвигатели или сервомеханизмы. Во втором случае элементами выступают гидравлические цилиндры.

Приводами на гидроцилиндрах оснащаются автомобили следующих марок: Peugeot, Fiat, Renault, BMW, Volkswagen, Citroen и многие иные марки. На основе электропривода характерными представителями являются: Nissan, Opel, Mitsubishi и другие.

Для полного понимания вопроса, как ездить на роботизированной коробке передач, потребуется осветить ряд вопросов.

Прогрев роботизированной коробки переключения передач и особенности эксплуатации

Многим из владельцев такого типа коробок переключения передач или тем, кто их совсем недавно открыл для себя впервые, интересен вопрос: необходим ли предварительный прогрев роботизированной коробки в условии низких или экстремально низких температур?

Хотя по уверениям конструкторов и с чисто эксплуатационной точки зрения прогрев такому виду коробки передач не нужен, однако стоит учитывать важный момент – температуру масла и то, как оно ведет себя при низких температурах. Ведь некоторые разновидности масел при небольших температурах начинают густеть и скапливаться в нижней части коробки передач.

Стандартная процедура прогрева заключается в том, чтобы на несколько минут оставить машину в заведенном виде, а во время прогрева селектор оставить в покое. При этом трогаться лучше плавно и спокойно, избегая рывков и толчков. Следите за оборотами: их уровень должен быть на минимуме в районе около одного километра.

В любом случае, подобную процедуру можно и даже рекомендуется проводить и в летнее время, что позволит всем элементам трансмиссии и коробки передач получить достаточно жидкую смазку.

Такие меры перед непосредственным началом движения сыграют очень положительную роль в сроке службы любого авто и предотвратят истирание и износ отдельных элементов.

Для того, чтобы избежать преждевременного выхода из строя как составных частей коробки переключения передач, так и трансмиссии в целом, рекомендуется соблюдать ряд определенных правил:

  1. Категорически не рекомендуется буксовать при низких температурах. В таких условиях букс становится губительным для системы исполнения в целом и может привести к разкалибровке.
  2. Также важно избегать заснеженных участков дороги, так как существует определенная вероятность просто-напросто застрять, что приведет к нежелательным пробуксовкам.
  3. «Липучки» лучше не покупать, а выбрать сразу же резину с шипами.
  4. В моменты долгих простоев или когда машина просто «ночует» во дворе вашего дома, её лучше оставить на передаче со значением «Е». Разумеется, при условии выключенного двигателя.
  5. В случае, когда дорожное покрытие ненадлежащего качества, рекомендуется трогаться, не газуя, со второй передачи.

Стартуем правильно: движемся на возвышенность, преодолеваем её и спускаемся

Всем тем, кто выбрал роботизированную коробку переключения передач, или тем, кто только собирается это сделать, следует учесть одну важную деталь: некоторые из автомобилей, содержащих её в составе своей трансмиссии, часто не оснащаются дополнительной функцией помощи при старте на возвышении. Именно поэтому крайне важно выучиться самостоятельно осуществлять передвижение при условии движения по наклонной дороге.

Поведение водителя в данной ситуации должно быть аналогично поведению при использовании механической коробки переключения передач, поэтому тем, кто на «роботов» перебрался с «механики», будет проще. Опишем процесс детальнее: селектор переводим в положение «А», затем легонько и равномерно нажимаем на акселератор; в это же время не спеша снимаем машину с ручника.

Если условия, в которых осуществляется подъем на возвышенность, характеризуются низкой температурой и повышенной влажностью, то может потребоваться ручное управление или режим «М1». Важно при этом помнить о том, чтобы давление на газ было допустимо возможным, такая мера предотвратит образование ситуации с пробуксовкой.

При наличии в автомобиле гироскопа, когда выбран авторежим, роботизированная коробка самостоятельно начнет выбирать нужные передачи и, соответственно, переключать их. При условии такого движения переключение будет осуществляться преимущественно на понижение. Опытным водителям в зависимости от ситуации можно выбрать функцию «М» при фиксации текущей скорости. В случае, когда водитель решил выбрать скоростной режим самостоятельно, ему рекомендуется выбрать её и соблюдать обороты в диапазоне 2500-5000, не ниже и не выше. Это табу!

Что касается движения по спуску, то делать ничего особенно не потребуется, кроме как перевести селективный рычаг в положение «А» и отключить ручной тормоз.

Эксплуатация роботизированной коробки передач в городских условиях

Среди специалистов и заядлых автолюбителей распространено убеждение, что городские условия вкупе с пробками часто пагубно влияют на срок службы роботизированной коробки переключения передач. Чтобы избежать такого пагубного эффекта, при полной остановке автомобиля рекомендуется выставлять селективный рычаг в положение «N», после чего активировать ручной тормоз и заглушить двигатель. В случае же, когда остановки носят кратковременный характер, применение положения «N» не потребуется, можно остаться в положении «А».

Стоит также учитывать, что в пробках длиною более минуты мотор скорее всего потребуется заглушить.

В целом и общем

Итак, тонкости и нюансы езды на роботизированной коробке передач мы рассмотрели, осталось освоить немного полезных правил, которые будут особенно полезны новичкам и неопытным водителям, в частности тем, кто сталкивается с роботизированной коробкой переключения передач впервые:

  1. При осуществлении старта не стоит нажимать до упора на газ, при желании набрать скорости её следует топить уверенно, но вместе с тем и равномерно, плавно.
  2. Для того, чтобы избежать характерные для роботизированной коробки переключения передач рывки и подёргивания, специалисты и просто заядлые автовладельцы с «роботами» рекомендуют регулярно осуществлять процесс инициализации в специальных сервисных центрах.
  3. При наборе скорости и особенно интенсивном ускорении рекомендуется применять навыки работы с механическими коробками (разумеется, при условии, что вы ранее на ней ездили самостоятельно).

Также следует помнить и учитывать тот факт, что существуют некоторые дополнительные положения, кроме рассмотренных нами.

Некоторые из роботизированных коробок имеют режимы вроде «зимний» или «спорт». Первый режим устроен так, что дает плавность и контроль при езде по зимней дороге. Второй же дает возможность перейти на повышение передачи при условии больших оборотов, а это делает возможным быстрое ускорение.

Заключение

Итак, перед тем, как выбрать роботизированную коробку передач как основу трансмиссии вашего будущего автомобиля, внимательно ознакомьтесь с особенностями и тонкостями работы и езды на ней, чтобы избежать большинства ошибок, допускаемых новичками, а также сохранить все её элементы в целости и сохранности на долгие годы. Удачи на дорогах!

Мы рассмотрели основные правила эксплуатации классической АКПП. Но, как вы знаете, существует еще 2 типа автоматических коробок – вариаторные и роботизированные. Здесь мы расскажем об автомобилях именно с этими трансмиссиями, правилах их использования, эксплуатации и поддержания в исправном состоянии.

Как правильно пользоваться вариатором

Общее автомобиля с вариатором и автомобиля с классическим автоматом — это отсутствие педали сцепления. Отличаются же эти КПП, прежде всего принципом работы и устройства. Вариатор устроен таким образом, что в нем изменение передаточного числа происходит бесступенчато , за счет плавного изменения диаметров ведущего и ведомого дисков. При таком устройстве КПП, выжатая «в пол» педаль акселератора, обеспечивает вывод мотора на высокие обороты на протяжении всего разгона. Как результат — транспортное средство разгоняется быстрее из-за экономии времени на переключении ступеней передач. Режимы работы вариатора практически аналогичны режимам классического автомата:

  • «P» – паркинг. Используется для длительной стоянки автомобиля, при этом все элементы управления автомобилем блокируются. Также с этого режима запускается двигатель.
  • «D» — драйв, движение. Осуществляется обычное движение автомобиля вперед с плавным автоматическим переключением передач.
  • «N» – нейтраль. На вариаторах используется, в основном при постановке автомобиля на стоянку на наклонной поверхности.

    Для этого нужно остановить машину педалью тормоза, перевести рычаг в нейтральное положение, затянуть ручник, отпустить и сразу же опять выжать тормоз. Только после этого можно переводить РВД в положение «P». Такая последовательность действий обусловлена тем, что у вариатора, при парковке, блокируется не колесо, а вал в коробке передач. Причем делается это штырем небольшой толщины, который легко можно сломать при неаккуратной парковке «на скорости».

  • «L» – low (с англ. низкий). Режим предполагает работу двигателя на завышенных оборотах и максимальную реализацию эффекта торможения двигателем . Поэтому в это положение нужно переходить при сложных дорожных условиях (бездорожье, крутые подъемы и спуски), а также при буксировке тяжелого прицепа. Хотя на вариаторе нет фиксированных передач, можно сказать, что этот режим является аналогом первой передачи МКПП.

Многие производители предусматривают также спортивный («S») и экономичные («E») режимы. Первый режим («S») предусматривает максимально возможное в конкретной ситуации использование мощности двигателя. Подходит для более «лихаческой» езды с быстрыми стартами, высокими ускорениями и резкими рывками. Второй («E»), наоборот, обеспечивает спокойное движение с минимальным расходом топлива. Также как и классическая АКПП, вариатор любит частую смену масла . Вообще, масло для вариаторной коробки относится к абсолютно отдельной группе масел, которые, с одной стороны обеспечивают смазку трущихся поверхностей, а с другой, предотвращают их проскальзывание. На первый взгляд может показаться, что одна функция должна исключать другую, но такая особенность есть и именно она делает масла для вариаторных КПП столь уникальными. Несмотря на специфичность, цена у масла достаточно демократичная. Если же вовремя его не заменить или не долить до нужного объема, то со временем ремень или цепь начнет проскальзывать по дискам, тем самым постепенно разрушая их.

Полную замену масла на вариаторе, как правило, рекомендуется проводить через каждые 60 000 км, но, учитывая наше состояние дорог, менять масло следует не реже, чем через каждые 30 000 км пробега.

Буксировку автомобиля с вариаторной коробкой передач производить можно , но только при заведенном двигателе. Именно при этом условии обеспечивается смазка соприкасающихся поверхностей и надежное зацепление ремня со шкивами. Если же проблема как раз в двигателе и завести его не удается, то остается вариант буксировки автомобиля с частичной погрузкой (причем погрузить нужно ведущую ось), либо вызов эвакуатора. Также как и классический автомат, вариатор не любит рваной езды . Плавные разгоны и торможения — это оптимальные условия для работы ремня, которые не приведут к излишним продольным нагрузкам и обеспечат щадящий режим работы дисков. В ином случае, на них появятся задиры, что приведет к некорректной работе трансмиссии и, впоследствии, к дорогостоящему ремонту. Особенно это касается кроссоверов. Как ни парадоксально звучит, но если его использовать как внедорожник, то нужно учитывать, что, вероятнее всего, трансмиссия прослужит гораздо меньше заявленного времени. При езде на автомобиле с вариаторной КПП следует также избегать и всяческих ям, ухабов, выбоин и выпуклостей на дороге. Конечно, ни к чему хорошему такие вещи не приведут и при езде с механической коробкой, но для вариатора они могут стать губительными. Так, даже элементарный наезд на камень или в яму могут привести к серьезной поломке из-за сильной «отдачи» на ремень. Не рекомендуется использовать автомобиль с вариатором и для быстрой равномерной езды. Это ведет к гораздо более быстрому изнашиванию подшипников валов, о чем будет свидетельствовать характерный гул.


Если вы еще не определились, что лучше выбрать — автомат или механику , читайте нашу статью о всех преимуществах и недостатках АКПП и МКПП.

Интересно какая часть цены при покупке нового авто отходит на растаможку, автосалонам и государству? вы найдете интересную информацию на эту тему.

Неудобная ситуация, когда нужно завести машину, а ключа нет. /tehobsluzhivanie/alert/zavodit-mashinu-bez-klyucha.html — читайте как это сделать быстро и правильно.

Как пользоваться роботом

Управление автомобилем с роботизированной коробкой передач осуществляется аналогично управлению авто с классическим автоматом или вариатором. Даже внешний вид рычага может быть похожим, например, как у Audi и Infiniti. Но чаще разработчики избавляются от режима «Р» (парковка), например, как это сделали инженеры Toyota и Citroen. При этом, стоянка автомобиля осуществляется на нейтралке (N) или, если в автомобиле предусмотрен мануальный режим, — на первой передаче. В последнем случае позиция “D” может заменяться на “A/M” для переключения между автоматическим и ручным режимами управления авто. Прогревать автомобиль с роботом перед началом движения можно на нейтральной передаче , температура коробки даже при этом условии поднимется до необходимого уровня. Однако, лучше догревать и прогревать автомобиль уже в процессе движения. Для этого достаточно проехать спокойно, без резких рывков примерно 1 км после трогания, используя только треть, максимум половину хода педали газа. На роботе, в отличие от классического автомата, можно буксовать, это не приведет к поломке. Также, при определенных навыках, можно использовать прием выезда из сугробов и ям «в раскачку», поочередно понемногу двигаясь вперед-назад. Многие знают о неприятной особенности роботов «дергаться» при каждом переключении передач (это не относится к роботу DSG с двумя сцеплениями). Естественно каждый такой рывок не вызывает особо приятных ощущений у водителя и, тем более, пассажиров. Также очевидно, что такое поведение робота может быть особо опасно при движении по снегу или по скользкой поверхности. Для того, чтобы уменьшить неприятные ощущения и риск застрять в снегу или уйти в занос, водителю во время переключений нужно ослабить нажим на педаль газа или вообще убирать с нее ногу . Тогда переключения будут происходить гораздо более плавно. Правда научиться подгадывать момент переключения передач осуществляемый электроникой бывает довольно сложно, но с наработкой опыта этот навык обязательно придет. Следует помнить, что устройство коробки передач робота практически аналогично устройству обычной МКПП, с тем различием, что сцепление здесь «выжимает» электроника, а не водитель, давя на соответствующую педаль. Поэтому при медленном движении в пробках следует переводить РВД в нейтральное положение . Ведь если автомобиль стоит, а передача включена, то сцепление находится в выжатом включенном состоянии, при этом изнашиваются корзина сцепления, выжимной подшипник и сам ведомый диск. Перед тем, как заглушить двигатель и поставить автомобиль на длительную стоянку, передачу, как и на механике, лучше оставить включенной.

Обязательным правилом эксплуатации автомобиля с роботизированной механикой является включение ручного тормоза при постановке авто на стоянку.

Смотрите видео о том, как правильно использовать роботизированную коробку передач: Последнее, что можно добавить о роботизированной и вариаторной КПП – это ручной режим управления или, так называемый, типтроник. Реализуется он переводом рычага выбора передач в специальный дополнительный паз, обозначенный знаками «+» и «-» для повышения и понижения передачи соответственно, а узнать больше об этом варианте кпп можно в нашем материале. В целом же можно сказать, что, даже несмотря на разнообразие нюансов в управлении вариатором и роботом, при определенном опыте вождения вырабатываются привычки и навыки, которые здорово помогают в процессе управления автомобилем. Соблюдение же наших советов и вышеперечисленных правил помогут значительно продлить жизнь коробке передач и всему автомобилю.

Сегодня автомобили с роботизированной коробкой передач ( , ) составляют серьезную конкуренцию классическому и по целому ряду причин. Прежде всего, коробка робот дешевле в производстве, также РКПП позволяет обеспечить высокую топливную экономичность, что особенно актуально с учетом жестких экологических норм и стандартов.

При этом на первый взгляд может показаться, что , однако это не так. С учетом определенных особенностей и конструктивных отличий, необходимо знать, как пользоваться коробкой робот, чтобы добиться максимального комфорта при езде и продлить срок службы агрегата.

Читайте в этой статье

Как правильно пользоваться роботизированной коробкой передач

Прежде всего, роботизированная КПП фактически представляет собой , в которой управление , а также выбор и включение/выключение передач осуществляется автоматически. Другими словами, коробка робот это все та же «механика», только передачи переключаются без участия водителя.

Еще отметим, что роботизированная трансмиссия также имеет ручной (полуавтоматический) режим, то есть водитель может самостоятельно повышать и понижать передачу аналогично Типтроник на АКПП. Становится понятно, что производители РКПП стремятся имитировать классический автомат для упрощения взаимодействия. По этой причине робот имеет похожие режимы.

  • Как и на АКПП, имеется режим «N» (нейтраль). В этом режиме крутящий момент на колеса не передается. Указанный режим нужно включать при простое с заведенным двигателем, в том случае, если выполняется буксировка авто и т.д. Режим «R» (реверс) означает движение назад.
  • Также коробка робот имеет режимы А/М или Е/М, что является аналогом режима D (драйв) для движения вперед. Такое обозначение свойственно простым «однодисковым» РКПП, то есть коробка имеет только одно сцепление. При этом следует отметить, что роботизированные коробки передач с двойным сцеплением (например, DSG) имеют режим, обозначенный литерой D (драйв), как и на обычных АКПП.
  • Что касается режима М, это значит, что коробка переведена в режим ручного управления (аналогично Типтроник), а обозначения «+» и «-» указывают, куда нужно двигать селектор для повышения или понижения передачи. Еще добавим, что на коробках типа DSG управление ручным режимом может быть выполнено в виде отдельной кнопки на селекторе.

Эксплуатация роботизированной коробки передач: нюансы

Итак, если в автомобиле стоит роботизированная коробка автомат (робот), как пользоваться такой КПП, мы рассмотрим ниже. Казалось бы, данная коробка похожа на АКПП по принципу работы и не сильно отличается от аналога. Другими словами, нужно только перевести селектор в то или иное положение, после чего автомобиль начнет движение, причем дальнейшая езда будет похожа на машину с классической АКПП.

Сразу отметим, РКПП сильно отличается от автомата с . По этой причине нужно знать, как управлять коробкой робот, а также правильно эксплуатировать такую КПП.

  • Начнем с прогрева, то есть нужно ли прогревать коробку робот зимой. Как известно, для , так как трансмиссионное масло (жидкость ATF) должно немного разжижиться. При этом для роботизированной коробки требования менее жесткие.

Если просто, однодисковый робот нужно греть точно так же, как и обычную механику. Что касается DSG, особенно с «мокрым» сцеплением, прогреть такую РКПП необходимо чуть дольше, так как в ней залит большой объем трансмиссионной жидкости.

В любом случае, как для МКПП, так и для РКПП независимо от типа, общие правила похожи. Важно понимать, что за время простоя масло в коробке стекает и густеет при низких температурах. Это значит, что двигатель должен поработать определенное время на холостых, чтобы , а также масло успело растечься по полостям коробки передач.

При этом, в отличие от АКПП, селектор в разные режимы переводить не нужно, то есть достаточно включить нейтраль N. Дальнейшее движение должно быть в щадящем режиме, без резких стартов, на невысокой скорости. Помните, масло в коробке греется намного дольше, чем в двигателе. Чтобы трансмиссионная жидкость полностью прогрелась и вышла на рабочие температуры, необходимо проехать, в среднем, около 10 км.

  • Езда на подъемах и спусках с коробкой робот также является моментом, который заслуживает отдельного внимания. Существует много моделей с РКПП (как правило, в бюджетном сегменте), которые не имеют системы помощи при старте на подъем.

Это означает, что трогаться на подъем с роботизированной коробкой нужно точно так же, как и на механике. Простыми словами, потребуется использовать ручник (стояночный тормоз). Сначала следует затянуть ручник, затем включается режим A, после этого водитель нажимает на педаль газа и параллельно снимает машину с ручника. Указанные действия позволяют тронуться в гору без отката.

Кстати, в этом случае также можно пользоваться не только автоматическим, но и ручным режимом, включая первую передачу. Единственное, не следует сильно давить на газ, так как возможна пробуксовка колес. Еще добавим, что алгоритм работы РКПП предполагает, что такая коробка не позволяет двигаться в натяг, то есть на подъеме нужно повышать обороты двигателя.

Что касается спусков, в этом случае отпадает необходимость каких-либо дополнительных действий. Водитель просто переводит селектор в режим A или D, отключает стояночный тормоз и начинает движение. При езде под уклон будет проявляться .

  • Остановка на светофоре, движение в пробке и длительная стоянка. Сразу начнем с кратковременных остановок и пробок. Прежде всего, если стоянка короткая (около 30-60 сек.), например, на светофоре, нет необходимости переводить селектор из режима А или D в N. Однако более длительный простой все же потребует перехода на нейтраль.

Дело в том, что когда на роботе включен режим «драйв» и водитель останавливает автомобиль при помощи тормоза, сцепление остается выжатым. Становится понятно, что если машина находится в пробке или подолгу стоит на светофоре, нужно переключаться на «нейтралку», чтобы уберечь сцепление и продлить срок службы данного узла.

Что касается парковки или стоянки, после того, как автомобиль полностью остановлен, селектор РКПП переводится из режима A в N, затем затягивается ручник, после чего можно отпустить педаль тормоза и глушить двигатель автомобиля.

  • Дополнительные режимы коробки робот. Следует отметить, что роботизированная коробка также может иметь такие режимы как S (спортивный) или W (winter, зимний), причем последний часто обозначается в виде «снежинки».

Не вдаваясь в подробности, в зимнем режиме коробка передает на колеса «мягко», чтобы избежать пробуксовок на заснеженной дороге или на льду. Как правило, автомобиль в этом режиме трогается с места на второй передаче, а также плавно переходит на повышенные. В спорт режиме коробка робот переходит на повышенные передачи на высоких оборотах, что улучшает приемистость и разгонную динамику. При этом расход топлива также увеличивается.

Еще добавим, что во время езды роботизированная коробка позволяет переключаться из автоматического режима в ручной и обратно. Это значит, что водитель может прямо на ходу повышать и понижать передачи. Однако получить полный контроль над работой КПП не получится, так как режим полуавтоматический.

Такая особенность является «защитой», так как понижение передач на две ступени вниз может привести к тому, что обороты двигателя «упрутся» , момент переключения будет сопровождаться ударом, сильной нагрузкой на трансмиссию и т. д. Другим словами, включение той или иной передачи возможно только в том случае, если диапазон допустимых оборотов и скорость ТС, прописанные в , позволяют включить выбранную водителем передачу.

Как правило, водители, которые ранее эксплуатировали автомобили с классической АКПП, отмечают определенные особенности и отличия простых роботизированных коробок с одним сцеплением.

Данная коробка (однодисковый робот), может «затягивать» включение передач, отличается «задумчивостью» при понижении или повышении передачи и т.п. Также РКПП может работать не совсем корректно при резких нажатиях на акселератор и больше подходит для спокойной езды.

Чтобы резко ускориться, оптимально перейти в ручной режим, а также нажимать на газ плавно, чтобы минимизировать задержки и провалы. Что касается торможения двигателем, данный эффект вполне приемлемо реализован в автоматическом режиме.

Также для РКПП характерны легкие толчки при переключении передач. Все дело в том, что толчок появляется в момент, когда сцепление «смыкается». Избежать таких толчков можно, интуитивно угадывая, когда электроника инициирует переключения, и немного сбрасывая газ перед таким переключением.

Еще добавим, что сходство с механикой и наличие ручного режима все равно не означает, что на машине с роботом можно активно буксовать. Дело в том, что если на МКПП водитель «подпаливает» сцепление, далее износ узла и момент включения/выключения компенсируется изменением хода педали сцепления, также сам водитель чувствует момент включения и выключения механизма и т.д.

В случае с роботом, электроника попросту не «умеет» учитывать такой износ, что приводит к отклонению от запрограммированной точки схватывания, то есть происходит нарушение калибровки точно настроенных исполнительных механизмов. По этой причине один раз в 10-15 тыс. км необходимо выполнять инициализацию (обучение) коробки робот, так как игнорирование данного правила может привести к тому, что .

Что в итоге

С учетом приведенной выше информации становится понятно, что среди всех роботизированных коробок оптимальным вариантом можно считать преселективный робот с двумя сцеплениями (например, ).

Данные коробки передач лишены многих недостатков однодисковых РКПП, а также обеспечивают максимум комфорта и высокую топливную экономичность. Также следует отметить, что робот с двойным «мокрым» сцеплением при грамотном обслуживании и эксплуатации имеет больший срок службы по сравнению с аналогами

Что касается езды, в большей степени отличия РКПП от АКПП проявляются именно в случае с однодисковыми роботизированными коробками передач. Если автомобиль оснащен такой коробкой, перед началом активной эксплуатации рекомендуется отдельно изучить особенности работы трансмиссии данного типа на практике.

Напоследок отметим, что в случае с DSG и аналогами, особенно если ТС имеет систему помощи при старте на подъеме, особой разницы между АКПП и РКПП водитель не заметит. Основной рекомендацией в этом случае остается только необходимость переводить коробку из «драйва» в «нейтраль» при простоях больше 1-2 минут.

Читайте также

Коробка передач DSG (ДСГ): конструкция, принцип работы, отличительные особенности. Надежность, ресурс DSG, виды роботизированных коробок DSG, советы.

  • Коробка передач АМТ: устройство и работа роботизированной коробки передач, виды коробок-робот. Преимущества и недостатки роботизированной трансмиссии.
  • На современных автомобилях используется несколько видов коробок передач – механическая, автоматическая, вариаторная. Механическая коробка отличается своей надежностью, но требует от водителя навыков управления. Автоматическая же значительно проще в управлении, но более «капризна» в техническом плане. Недавно же конструкторы выпустили еще один тип КПП – роботизированная. В ней они постарались соединить воедино надежность «механики» с удобством «автомата». И это у них получилось – все больше автопроизводителей комплектуют свои авто роботизированной коробкой передач.

    Немного об устройстве

    Суть такой коробки достаточно проста – имеется механическая КПП и электронный блок ее управления. У РКПП все функции, которые должен был выполнять водитель с механической коробкой (выжим сцепления, перевод рычага коробки в нужное положение) выполняется актуаторами – сервоприводами электронного блока.

    Благодаря этому надежность КПП возросла за счет использования классической «механики» и возросло удобство ее пользования. Водителю всего лишь необходимо переводить селектор в нужное положение (как в автоматической КПП) и наслаждаться ездой, а электронный блок позаботится о том, чтобы выполнялось переключение передач.

    При всем этом многие роботизированные коробки оснащаются еще и ручным управлением, что позволяет управлять водителю коробкой самостоятельно, с единственным отличием – нет необходимости выжимать сцепление.

    Особенности управления

    Некоторые режимы работы РКПП получила от , а именно:

    • «N» — нейтраль. Режим, при котором крутящий момент на колеса от КПП не передается. То есть двигатель работает, на коробку передается вращение, но из-за положения шестерен на колеса оно не передается. Используется при длительной стоянке авто, перед началом движения, после остановки;
    • «R» — движение задним ходом. Здесь все просто, водитель переводит селектор в это положение и авто движется назад.

    Другие же режимы роботизированной коробки имеют свое обозначение:

    • «А/М» или «Е/М» — движение вперед. Этот режим соответствует режиму «D» автоматической коробки, то есть автомобиль движется вперед, а КПП производит переключение передач. В режиме «М» выполняется ручное управление. Переводом селектора в определенный паз выбирается необходимый режим;
    • «+», «-» — переключатель передач. Кратковременные переводы селектора в сторону «+» или «-» обеспечивают переключение передачи при ручном режиме управления «М».

    Требуется ли прогрев коробки?

    Вроде все просто, и ничего сложного в управлении такой коробки нет – достаточно перевести селектор в нужное положение, и начать движение. И все же следует знать, как управлять коробкой робот, чтобы она работала без проблем.

    Начнем с интересного вопроса – нужно ли прогревать КПП перед началом движения зимой? Для автоматической коробки в зимний период прогрев обязателен и выполняется он кратковременным переводом селектора во все положения.

    Роботизированная коробка, по сути, механическая и не требует прогрева. И все же зимой перед началом движения прогреть РКПП следует, хотя это не совсем прогрев. Во время стоянки масло в коробке стекает вниз и из-за мороза загустевает. Поэтому рекомендуется зимой после запуска мотора дать время, чтобы масло скорее не прогрелось, а просто растеклось по элементам коробки, снижая между ними трение. Достаточно просто постоять пару минут с заведенным мотором, при этом селектор переводить в разные режимы не нужно, достаточно держать его в положении «N». После этого движение нужно начинать плавно, без резких рывков и проехать так хотя бы 1 км, что обеспечит полный прогрев масла.

    Начало движения на подъем, его преодоление, спуск

    Многие автомобили с РКПП не оборудованы системой помощи старта на подъем, поэтому правильно начинать движение нужно научиться самому водителю. При старте на подъем с роботизированной коробкой необходимо поступать, как и с «механикой». Для начала движения селектор переводится в режим «А», плавно нажимается акселератор и одновременно авто снимается с ручника. Такое действие исключит откат авто назад. Одновременно жать на газ и снимать с ручника следует потренироваться, чтобы водитель чувствовал двигатель и понимал, когда сцепление начало включаться и можно снимать с ручника.

    При начале движения на подъем в зимний период лучше использовать ручной режим, при этом устанавливать первую передачу. Сильно газовать не стоит, чтобы не было пробуксовки колес.

    При движении на подъем при выбранном автоматическом режиме коробка самостоятельно начнет переходить на пониженные передачи, что является вполне логичным, ведь при повышенных оборотах преодолеть подъем легче. Такая КПП оснащена гироскопом, который определяет положение автомобиля, и если датчик показывает подъем, то коробка буде работать соответственно. Можно совершать движение и в ручном режиме, зафиксировав определенную передачу. Важно понимать, что РКПП не даст двигаться в натяг, поэтому при подъеме обороты двигателя должны быть не меньше 2500 об/мин.

    При спуске же никаких действий от водителя не требуется. Достаточно перевести селектор в положение «А», и снять ручник. При этом авто будет производить торможение мотором.

    Остановка, парковка

    И третий немаловажный вопрос – правильность парковки и остановки. После полной остановки авто, селектор необходимо перевести в нейтраль «N», поставить на ручник и после заглушить двигатель. При кратковременных остановках перевод селектора в нейтраль необязателен, вполне можно оставаться и на режиме «А». Но стоит учитывать, что при остановке сцепление остается выжатым. Поэтому в пробке или на светофорах, когда остановка затягивается по времени, все же следует переходить на нейтраль.

    Другие режимы

    Это основные правила, как управлять роботизированной коробкой. Но есть и другие особенности, к примеру, некоторые РКПП имеют дополненные режимы – спорт и зимний, так называемая «снежинка».

    «Снежинка» направлена на то, чтобы как можно плавнее и без пробуксовок начать движение на обледенелой дороге. Все что она делает, это обеспечивает начало движения сразу со второй передачи и более плавные переходы на повышенные передачи.

    Режим «спорт» производит переход на повышенные передачи при больших оборотах, чем в обычном режиме. Это позволяет быстрее ускоряться. То есть, если при обычном режиме переход на 2 передачу выполнялся, к примеру, при 2500 об/мин, то в режиме «спорт» этот переход будет осуществляться при 3000 об/мин.

    Теперь о возможности перехода из автоматического режима в ручной и обратно во время движения. Роботизированная коробка без проблем позволяет это делать. Также позволяется самостоятельно понижать или повышать передачу для изменения скорости движения. Но стоит учитывать, что полностью управление коробкой электронный блок не передаст, он будет постоянно контролировать работу.

    Поэтому если водителю вздумается перейти, к примеру, на две передачи вниз, то электронный блок сделать это даст, но при этом проконтролирует обороты двигателя и если они не будут соответствовать выбранной передачи, электроника самостоятельно выполнит переход на допустимую передачу – сработает так называемая «защита от дурака».

    Здесь все просто – электронный блок запрограммирован так, что каждой передаче соответствует определенный диапазон оборотов двигателя. И если выбранная вручную передача соответствует своему диапазону, то коробка выполнит переключение, а если нет – включит необходимую скорость.

    Такая коробка «не терпит» резких нажатий на педаль газа, поэтому лучше осуществлять движение в спокойном режиме. Даже при необходимости ускориться — лучше жать на акселератор плавно, при этом стоит перейти в ручной режим. А при торможении следует наоборот – переходить в автоматический режим.

    Особенностью РКПП является наличие небольших толчков при переключении передач. От них можно избавиться достаточно просто – при переключении передач сбрасывать обороты двигателя, то есть действовать по аналогии с обычной механической коробкой.

    Наличие ручного режима позволяет даже выполнять выезд «враскачку» в случае, если авто застряло в сугробе. Но при этом на пользу КПП это не пойдет, так как буксовать на РКПП не рекомендуется, это может привести к декалибровке исполнительных механизмов. Поэтому застрявшее авто все же лучше извлекать с привлечением сторонней помощи.

    Обязательно при каждом ТО делать инициализацию и проводить диагностику состояния РКПП, что позволит устранить все еще на раннем этапе.

    Есть и другие мелкие особенности таких коробок, которые зависят от изготовителя. Ими лучше сразу поинтересоваться, чтобы в дальнейшем не возникло недоразумений с эксплуатацией роботизированной коробки.

    Тяговые характеристики двигателей внутреннего сгорания и их приспособляемость к нагрузке недостаточны для прямого привода. Для адаптации используются разнообразные типы коробок перемены передач, которые позволяют изменить частоту вращения в достаточно широком диапазоне.

    Помимо этого, такой механизм обеспечивает возможность движения задним ходом, длительной остановки автомобиля с работающим силовым агрегатом.

    Коробка передач робот оснащается автоматом для управления работой устройства в заданном режиме с учетом нагрузки и других условий движения. Процессом руководит электронный блок, запрограммированный определенным образом.

    Водитель осуществляет выбор алгоритма и задает его при помощи селектора, кроме того, он может перенимать управление работой механизма и производить переключения как на обычной механике.

    Использование роботизированных коробок обеспечивает водителю максимально комфортные условия. Нет необходимости отвлекаться и терять время на переключения передач, а заложенные в процессор программы обеспечивают (в зависимости от условий движения) максимальную экономию топлива.

    Большинство ведущих автопроизводителей, и АвтоВАЗ в их числе, широко используют коробки передач такого типа на транспортных средствах разных классов.

    Что такое коробка передач робот

    В настоящее время существует множество разнообразных конструкций механизмов автомобильных трансмиссий. Для ответа на вопрос: коробка передач робот — что это такое?, следует разобраться в ее устройстве, изучить принцип работы и проанализировать достоинства и недостатки. Практически любой сложный механизм имеет свои плюсы и минусы, устранение которых невозможно без коренной переделки системы.

    По своей сути роботизированная коробка является логическим развитием традиционной механической. В ней функции управления переключением передач автоматизированы и контролируются электронным блоком. Помимо этого процессор дает команду на исполнительный механизм сцепления для разобщения двигателя и трансмиссии при перемене передаточного числа.

    Роботизированная коробка работает в комплексе с иными элементами трансмиссии. Автоматизированное управление согласуется с работой сцепления, предназначенного для обеспечения переключений.

    Устройство и принцип работы

    За все время развития автомобилестроения предпринимались множественные попытки упростить управление трансмиссией. Первые удачные конструкции роботизированных коробок передач,пошедшие в серию, появились только после оснащения машин процессорами. Все попытки автоматизировать управление при помощи электромеханических и гидравлических устройств не дали положительных результатов.

    Они оказались слишком ненадежными и не обеспечивали приемлемой скорости переключения. Еще одним недостатком такого рода коробок была излишне высокая сложность и, как следствие, запредельная стоимость.

    Решить все технические проблемы стало возможным только с появлением компактных и недорогих процессоров и датчиков, контролирующих режимы работы двигателя и трансмиссии.

    Конструкция

    Многие самостоятельно занимались разработкой данного класса механизмов. Это обеспечило достаточно большое разнообразие конструкций коробок передач роботов,тем не менее, можно выделить в них общие элементы:

    • электронный блок управления;
    • механическая коробка передач;
    • сцепление фрикционного типа;
    • система управления переключением передач и муфтой.

    Нередко функции электронного блока выполняет бортовой компьютер, контролирующий работу системы питания и зажигания в силовом агрегате. Процессор устанавливается вне картера коробки и соединяется с нею кабельными системами. Особое внимание при этом уделяется защите соединений, используются специально разработанные уплотнители. Нередко контактные группы покрываются тонким слоем золота для предотвращения окисления.

    За основу роботизированных коробок обычно берутся хорошо себя зарекомендовавшие устройства. Так, компания Mercedes-Benz при изготовлении агрегата Speedshift использовала АКП 7G-Tronic, вместо гидротрансформатора использовали многодисковое сухое сцепления фрикционного типа.

    По аналогичному пути пошли и баварские автомобилестроители из BMW, оснастив шестиступенчатую механическую коробку автоматизированной системой управления.

    Обязательным элементом, обеспечивающим работу коробки, является механизм сцепления. В случае с роботизированным устройством применяется конструкция фрикционного типа с одним или несколькими дисками. В последние годы появились трансмиссии с двойным механизмом сцепления, работающими параллельно. Такая конструкция обеспечивает передачу крутящего момента от двигателя без прерывания.

    Роботизированные трансмиссии мировых автопроизводителей
    Тип трансмиссииС одним сцеплениемС двумя сцеплениями
    Audi R-Tronic+
    Audi S-Tronic+
    Alfa Romeo Selespeed+
    BMW SMG+
    Citroen SensoDrive+
    Ford Durashift+
    Ford Powershift+
    Lamborghini ISR+
    Mitsubishi Allshift+
    Opel Easytronic+
    Peugeot 2-Tronic+
    Porsche PDK+
    Renault Quickshift+
    Toyota MultiMode+
    Volkswagen DSG+

    Системы управления работой сцепления и переключением передач бывают двух видов: с электрическим или гидравлическим приводом. Каждый из вариантов имеет свои положительные и отрицательные стороны. Возможны комбинации из названных выше способов управления коробкой, позволяющие максимально использовать достоинства обеих конструкций и свести к минимуму их недостатки.

    Электрический привод сцепления использует сервомоторы, которые обеспечивают минимальное энергопотребление. Отрицательным моментом является крайне низкое время переключения передач (в пределах от 300 мс до 500 мс), что приводит к рывкам и повышенным нагрузкам на детали трансмиссии.

    Гидравлические приводы работают значительно быстрее, это делает возможным оснащение такими коробками даже спортивных автомобилей. На суперкаре Ferrari 599GTO время переключения составляет всего – 60 мс, а у Lamboghini Aventador и того меньше – 50 мс. Такие показатели обеспечивают данным машинам высокие динамические характеристики при сохранении плавности движения.

    Принцип действия

    Для того, чтобы понять как работает роботизированная коробка передач, следует получить представление об алгоритме работы ее механизмов.

    Водитель запускает двигатель, выжимает педаль тормоза и переводит селектор в определенное положение. Привод сцепления разрывает поток мощности, а исполнительный механизм коробки производит подключение выбранной передачи.

    Водитель отпускает тормоз и плавно увеличивает обороты, автомобиль начинает движение. В дальнейшем все переключения производятся в автоматическом режиме, при этом учитываются заданный режим и данные от датчиков. Управление механизмом осуществляется процессором в соответствии с выбранным алгоритмом. При этом у водителя имеется возможность вмешиваться в работу коробки.

    Видео — роботизированная КПП (робот):

    Полуавтоматический режим роботизированной трансмиссии аналогичен функции ручного управления автоматической коробки — Tiptronic. В таком случае водитель при помощи рычага селектора или переключателей установленных на рулевой колонке производит переключения передач с понижением или повышением. Отсюда исходит и другое название роботизированной коробки – секвентальная.

    Трансмиссия такого типа получает все большее распространение на автомобилях. При этом наблюдается следующее разделение: коробками с электрическими сервомоторами комплектуются бюджетные модели. Ведущие автопроизводителя разрабатывают и выпускают серийно следующие типы механизмов:

    • Citroen – SensoDrive;
    • Fiat — Dualogic;
    • Ford — Durashift EST;
    • Mitsubishi — Allshift;
    • Opel — Easytronic;
    • Peugeot – Tronic;
    • Toyota – MultiMode.

    Для более дорогих моделей производятся коробки с гидравлическим приводом:

    • Alfa Romeo — Selespeed;
    • Audi — R-Tronic;
    • BMW — SMG;
    • Quickshift от Renault.

    Самая продвинутая по показателям роботизированная коробка ISR (Independent Shifting Rods) устанавливается на суперкары от компании Lamborghini.

    Отличие роботизированной коробки передач от автоматической

    Развитие и невысокая стоимость электронных блоков управления сделали возможным их применение на серийных моделях машин. Они имеют разные виды трансмиссии и возникает закономерный вопрос — в чем разница между коробкой передач роботом и автоматом? Если таковые отличия существуют, то какой вид из них будет лучше отвечать требованиям водителя и на какие характеристики следует обратить внимание при выборе автомобиля.

    Разница между роботизированной коробкой и автоматом состоит в конструкции сцепления. Вместо гидротрансформатора в ней используется одно- или многодисковое сухое сцепление фрикционного типа.

    В редукторе, как в механике, ведущие и ведомые шестерни находятся в постоянном зацеплении и задействуются они при помощи специальных муфт. Для уравнения угловых скоростей используются синхронизаторы.

    Видео — тест драйв Лада Приора с роботом АМТ:

    В автоматических коробках преимущественно используются редукторы планетарного типа и сложная система управления их функционированием. В первом и втором варианте выбор передаточного отношения определяется автоматикой. Это освобождает водителя от необходимости отслеживать режимы работы двигателя и производить переключения.

    В сравнении автоматической коробки с роботом, лидером по такому показателю, как экономичность, является второе устройство. В сухом сцеплении механические потери значительно ниже, нежели у гидротрансформатора.

    С другой стороны, автомат лучше обеспечивает плавность движения и езда в таком автомобиле более комфортная. Еще одним недостатком такого типа трансмиссии является дороговизна ремонта, который может выполняться только высококвалифицированными специалистами в условиях техцентра.

    При выборе между роботизированной коробкой и автоматом следует принимать все вышеперечисленные факторы. Для недорогих бюджетных моделей существенными являются стоимость автомобиля и издержки на его содержание. При покупке элитных автомобилей такие вопросы обычно не имеют особого значения. Для водителя разницы в управлении автоматом или роботом практически нет.

    Роботизированная коробка передач плюсы и минусы

    Сложные системы, к каковым относятся и автомобильные трансмиссии, имеют вполне определенные достоинства и недостатка. Ниже приведен анализ плюсов и минусовв конструкции и эксплуатации роботизированной коробки передач. При этом в расчет принимаются динамические, стоимостные и некоторые другие характеристики агрегата.

    К перечню положительных сторон коробки передач с роботизированным управлением можно отнести следующее:

    • Высокая надежность механизма редуктора, проверенного длительной эксплуатацией.
    • Применение сухого сцепления фрикционного типа способствует снижению потерь и .
    • Небольшое количество эксплуатационной жидкости – трансмиссионного масла порядка 3-4 литров, против – 6-8 литров у вариатора.
    • Высокая ремонтопригодность роботизированной коробки (фактически в качестве ее основы используется хорошо известная механика).
    • Автоматика повышает ресурс сцепления до 45 – 55 % по сравнению с традиционным управлением педалью.
    • Наличие полуавтоматического режима, позволяющего водителю вмешиваться в работу агрегата при движении в сложных дорожных условиях на подъеме или в пробке.

    Достоинства КПП «робот» очевидны, что способствует повышению популярности данного типа трансмиссии на автомобилях разного класса. Усилиями инженеров и конструкторов агрегат постоянно совершенствуется, его характеристики улучшаются.

    Компания Suzuki раскрыла секреты новой коробки передач | Major

    Новая роботизированная коробка переключения передач Auto Gear Shift будет сочетать в себе достоинства «механики» и «автомата».

    Компания Suzuki  опубликовала  технические характеристики  новой пятиступенчатой автоматизированной механической коробки передач (AMT) Auto Gear Shift. Новая коробка передач от Suzuki будет оснащена электрогидравлическим приводом, который автоматически задействует сцепление и КПП.

    Благодаря интеграции привода и контроллера, а также креплению их непосредственно на коробке передач, Auto Gear Shift обеспечивает слаженность работы всех механизмов устройства. Кроме того, новая коробка позволяет переключать передачи более плавно, а значит увеличить контроль над синхронностью работы сцепления, КПП и двигателя.

    Первый автомобиль, оснащенный новой пятиступенчатой автоматизированной механической коробкой передач Auto Gear Shift, будет представлен 5 февраля 2014 года на автомобильном салоне в Дели.

    Технические характеристики Auto Gear Shift:

    Экономичный расход топлива

    Благодаря механической трансмиссии, которая легла в основу Auto Gear Shift, а также компьютерному управлению переключением передач, автомобили, оснащённые новой роботизированной коробкой передач от Suzuki, расходуют топливо так же экономично, как и на «механике».

    Легкость вождения

    Водителю больше не нужно переключать передачи с помощью педали сцепления: эту функцию возьмет на себя коробка передач Auto Gear Shift, которая также будет удобна для эксплуатации  в пробках и во время парковки.

    Удовольствие от вождения

    Для поклонников «механики» в новой коробке Auto Gear Shift предусмотрен режим ручной работы КПП, который позволит управлять автомобилем в режиме механического переключения скоростей.

    Как правильно эксплуатировать DSG

    28.05.2021

    Реклама наших партнеров

    Коробка DSG – роботизированная механическая коробка передач с двумя сцеплениями, а также отдельным блоком управления Мехатроник. Сегодня DSG является одной из наиболее распространенных роботизированных КПП среди других типов автомобильных трансмиссий.

    Преселективная коробка — робот с двумя сцеплениями ставится на многие модели, выпущенные концерном Volkswagen, при этом можно встретить как более раннюю версию DSG-6, так и DSG-7.

    Как показывает практика, чтобы максимально увеличить срок службы DSG, необходимо учитывать определенные нюансы во время эксплуатации КПП данного типа. В этой статье мы рассмотрим, как правильно пользоваться такой коробкой передач.  

     

    Как правильно пользоваться DSG коробкой

    Начнем с того, что DSG обеспечивает отличную разгонную динамику и топливную экономичность, присущую МКПП, а также комфорт «классического» гидромеханического автомата. В результате преселективный робот стал одним из самых перспективных видов КПП.

    При этом даже с учетом схожести с АКПП по принципу работы, а также с МКПП по конструкции, эксплуатация автомобиля с DSG несколько отличается от автомата, механики и простых однодисковых роботов (коробка передач AMT). 

    Более того, некоторые нюансы возникают даже в зависимости от того, какой тип DSG установлен на конкретной модели авто. Например, коробка ДСГ-6 является «мокрой» (сцепление работает в масляной ванне), тогда как DSG-7 является «сухой».

    • При этом диски сцепления, как в первом, так и во втором случае изнашиваются, причем в случае с DSG-7 это происходит быстрее. Это значит, что агрессивный стиль езды, резкие ускорения с места, пробуксовка и т.п. для DSG-6 еще допустимы, однако о DSG-7 такого сказать нельзя.

    Дело в том, что сцепление в масляной ванне более защищено от износа и перегревов, чем его «сухой» аналог. Также ДСГ-6 изначально была рассчитана на больший крутящий момент (около 350 Нм), тогда как версия на 7 ступеней «переваривает» не более 250 Нм.

    На практике это означает, что чип-тюнинг и жесткая эксплуатация быстро выведут DSG-7 из строя. Следует упомянуть случаи, когда такая КПП не выхаживала больше 50-70 тыс. км. с момента покупки и требовала дорогостоящего ремонта.

    • Важно понимать, как пользоваться DSG в пробке и эксплуатировать машину с данной коробкой в черте города. Прежде всего, для того, чтобы экономить горючее, DSG в автоматическом режиме обычно быстро переключается с первой на вторую передачу. При этом если дальше водитель жмет на тормоз или не разгоняется, снова происходит переход на первую скорость.

    Получается, при такой езде «рывками» происходит ускоренный износ коробки и сцепления, сцепление перегревается и т.д. Чтобы этого избежать, оптимально переходить на ручное управление, используя полуавтоматический режим коробки. Если просто, водитель самостоятельно включает первую передачу и не переключается на вторую, если сложилась такая ситуация на дороге.

    • Еще в списке правил, которые могут увеличить ресурс DSG, следует выделить необходимость активно нажимать на педаль тормоза при переключении режимов. В том случае, если тормоз не выжат полностью, DSG не до конца размыкает диски сцепления, тем самым увеличивается износ.

    Также правило перехода на «нейтралку» при остановках, актуальное для «однодисковых» роботов, в меньшей степени затрагивает DSG.  Другими словами, переключаться в режим N на светофорах и при простоях до 60 сек. нет необходимости, так как частые переключения только увеличивают износ. Более того, при полностью нажатом тормозе коробка сама размыкает сцепление.

    Нужно знать, что коробка DSG (особенно 7-и ступенчатая) «боится» пробуксовок даже больше, чем АКПП. Это значит, что буксовать в грязи, на льду, при старте с места в ручном режиме и т.д. запрещено.

    Также при постановке в режим «паркинг» необходимо пользоваться стояночным тормозом, чтобы продлить срок службы ограничителя (блокировочного механизма), который препятствует откату автомобиля. Переключения между режимами должны быть плавными, с небольшой задержкой около 1 секунды. За это время электроника вполне успеет «подстроиться».

    • Следует добавить, что автомобиль с DSG не следует перегружать буксировкой прицепа или другого транспорта, а также перевозкой различных грузов в самом авто. На практике, изначально тяжелая машина с DSG-7 (например, Skoda Superb) с полным салоном пассажиров и дополнительным грузом может весить около двух тонн. С учетом того, что коробка не рассчитана на большие нагрузки, такой робот может неожиданно выйти из строя.

    Что касается DSG-6, данная КПП более вынослива и устанавливается в паре с мощными двигателями. Однако и это не означает, что машину с подобной трансмиссией можно постоянно использовать в качестве буксира.

     

    Советы и рекомендации

    Прежде всего, коробка DSG нуждается в обслуживании, причем чаще, чем МКПП. Например, в DSG-6 сцепление работает в масле, также достаточно большой и сам объем смазочной жидкости.

    По этой причине замена масла в DSG должна производиться каждые 60 тыс. км. пробега. Параллельно меняется и фильтр коробки передач. При этом без должного опыта и оборудования лучше отказаться от самостоятельной замены в условиях гаража.

    Еще добавим, что, если машина с ДСГ застряла в грязи или снегу, нужно воздержаться от интенсивных попыток выехать «в раскачку». Лучше перевести коробку в режим N и воспользоваться сторонней помощью, то есть вытащить или вытолкать автомобиль.

    Если же возникла необходимость буксировки авто с DSG, нужно придерживаться правил и рекомендаций, буксировать машину с разрешенной скоростью и только на короткие расстояния. Информация обычно содержится в мануале.

     

    Что в итоге

    Как видно, эксплуатация DSG достаточно сильно напоминает использование классического гидромеханического автомата АКПП. При этом есть и отличия. Например, DSG позволяет переключиться из режима D в R без небольшой задержки в N. Однако, что касается пробуксовок, роботизированная трансмиссия к ним наиболее чувствительна.

    Также следует учитывать, что робот с двумя сцеплениями достаточно сложный агрегат в плане конструкции. При этом в сравнении с другими типами трансмиссии ремонт DSG часто получается не только затратным, но и проблемным. Причина — далеко не каждый автосервис способен качественно отремонтировать DSG.

    В качестве итога отметим, что даже с учетом всех сложностей и потенциальных проблем, коробка DSG все равно является наиболее предпочтительным вариантом при выборе нового авто.

    Также сам производитель VAG постоянно дорабатывает конструкцию, вносит изменения в алгоритмы работы КПП, совершенствует прошивки электронного блока и т.д. В результате можно рассчитывать на повышение надежности и достаточно продолжительный срок службы коробки передач.

     

     

    Источник: krutimotor.ru

    Реклама наших партнеров

    Акционные товары

    Как правильно ездить с коробкой DSG в городском режиме

    Роботизированная коробка передач DSG с двумя сцеплениями управляется при помощи мехатроника (электронный блок управления). Так как имеется парное сцепление, то переключение передачи происходит значительно быстрее обычных КПП, а также имеется ручное управление и возможность экономить топливо. Однако такие плюсы, подпитываются и небольшим набором минусов, а именно: не сильно высокий ресурс работы, возможный перегрев во время значительных нагрузок и дорогой ремонт.

    Поэтому важно знать как правильно ездить на ДСГ, чтобы можно было повысить эксплуатационный срок службы механической коробки, понизить риск появления возможных преждевременных неисправностей подшипников, втулок, а также других элементов механической части трансмиссии из-за их износа. Предлагаем в статье подробнее разобраться как правильно эксплуатировать DSG коробку передач и какие моменты стоит учитывать.

    Как правильно пользоваться коробкой ДСГ в городских пробках

    Благодаря двойному сцеплению удаётся плавно и быстро переключаться между передачами, на пустой дороге задействованы высокие передачи, что помогает сократить затраты топлива. А вот в городских пробках, постоянные торможения и езда небольшими рывками заставляет мехатроник включать быстро вторую передачу (так как действует из целесообразности сэкономить имеющееся топливо), после чего опять при торможении скидывать её на первую. В таком режиме сцепление работает постоянно, из-за чего происходит быстрый износ. Нужно понимать, как правильно ездить на DSG коробке в плотном потоке, а для этого предлагаем несколько полезных советов:

    • Желательно не сидеть «под бампером» у впереди идущего автомобиля, такой способ езды вынуждает вас набирать скорость и тормозить каждый метр. Будет лучше оставить запас между машинами до 6 метров, чтобы двигаться плавно и медленно на одной скорости.
    • Чтобы понимать как правильно пользоваться коробкой ДСГ (DSG) в пробках, желательно не забывать переходить на режим ручного управления. Такой способ езды позволит вам контролировать передачи и передвигаться только на первой скорости.
    • Желательно не устанавливать «нейтральное движение», ведь когда выжимается тормозная педаль, то и размыкание сцепления осуществляется в автоматическом режиме.

    А как правильно эксплуатировать ДСГ коробку, когда вы подъезжаете к светофору или оживлённому перекрёстку? Наверно каждому автолюбителю знакома ситуация, когда вы решаете подъехать к перекрёстку накатом на нейтральной скорости, как бы экономя топливо, но при этом двигаясь по остаточной инерции. Но в нашем случае данный способ не подходит, так как зачастую приходится резко выжимать тормоз в положение «N», в это время сцепление не успевает разомкнуться с маховиком и в итоге провоцируется лишнее и ненужное повреждение маховика. Такие действия непременно приведут вас к скорой поломке (подёргиваниям, скрежету и вибрации). Нужно понимать, пользуясь коробкой ДСГ, как правильно ездить и выжимать тормоз, в нашем случае нужно делать плавное нажатие на педаль, позволяя полностью разомкнуться механическим элементам. Конечно, при экстренных ситуациях приходится уже действовать резко, но в городском обыденном ритме стоит беречь КПП.

    Мы постарались рассказать, как правильно эксплуатировать коробку DSG в городском режиме пробок, чтобы вы могли как можно дольше продлить срок службы механической системы трансмиссии. Однако, если у вас возникли непонятные рывки, скрежет или подёргивания, то лучше всего без промедления обратиться в сервисный центр «ДСГ-Партнёр». Наши точки открыты в более чем 80 городах России, и мы предлагаем квалифицированную помощь опытных специалистов (более 10 лет работы только с роботизированными коробками DSG 6/DSG 7). Необходимо без промедления провести диагностику и выяснить очаг неисправности, чтобы предотвратить возможность образования более серьёзной и дорогостоящей поломки.

    Коробка дсг 7 ми ступенчатая правильная эксплуатация

    Главная » Блог » Коробка дсг 7 ми ступенчатая правильная эксплуатация

    Как правильно эксплуатировать DSG

    Коробка DSG – роботизированная механическая коробка передач с двумя сцеплениями, а также отдельным блоком управления Мехатроник. Сегодня DSG является одной из наиболее распространенных роботизированных КПП среди других типов автомобильных трансмиссий.

    Преселективная коробка — робот с двумя сцеплениями ставится на многие модели, выпущенные концерном Volkswagen, при этом можно встретить как более раннюю версию DSG-6, так и DSG-7.

    Как показывает практика, чтобы максимально увеличить срок службы DSG, необходимо учитывать определенные нюансы во время эксплуатации КПП данного типа. В этой статье мы рассмотрим, как правильно пользоваться такой коробкой передач.   

    Как правильно пользоваться DSG коробкой

    Начнем с того, что DSG обеспечивает отличную разгонную динамику и топливную экономичность, присущую МКПП, а также комфорт «классического» гидромеханического автомата. В результате преселективный робот  стал одним из самых перспективных видов КПП.

    При этом даже с учетом схожести с АКПП по принципу работы, а также с МКПП по конструкции, эксплуатация автомобиля с DSG  несколько отличается от автомата, механики и простых однодисковых роботов (коробка передач AMT).  

    Более того, некоторые нюансы возникают даже в зависимости от того, какой тип DSG установлен на конкретной модели авто. Например, коробка ДСГ-6 является «мокрой» (сцепление работает в масляной ванне), тогда как DSG-7 является «сухой».
    • При этом диски сцепления, как в первом, так и во втором случае изнашиваются, причем в случае с DSG-7 это происходит быстрее. Это значит, что агрессивный стиль езды, резкие ускорения с места, пробуксовка и т.п. для DSG-6 еще допустимы, однако о DSG-7 такого сказать нельзя.

    Дело в том, что сцепление в масляной ванне более защищено от износа и перегревов, чем его «сухой» аналог. Также ДСГ-6 изначально была рассчитана на  больший крутящий момент (около 350 Нм), тогда как версия на 7 ступеней «переваривает» не более 250 Нм.

    На практике это означает, что чип-тюнинг и жесткая эксплуатация быстро выведут DSG-7 из строя. Следует упомянуть случаи, когда такая КПП не выхаживала больше 50-70 тыс. км. с момента покупки и требовала дорогостоящего ремонта.

    • Важно понимать, как пользоваться DSG в пробке и эксплуатировать машину с данной коробкой в черте города. Прежде всего, для того, чтобы экономить горючее, DSG в автоматическом режиме обычно быстро переключается с первой на вторую передачу. При этом если дальше водитель жмет на тормоз или не разгоняется, снова происходит переход на первую скорость.

    Получается, при такой езде «рывками» происходит ускоренный износ коробки и сцепления, сцепление перегревается и т.д. Чтобы этого избежать, оптимально переходить на ручное управление, используя полуавтоматический режим коробки. Если просто, водитель самостоятельно включает первую передачу и не переключается на вторую, если сложилась такая ситуация на дороге.

    • Еще в списке правил, которые могут увеличить ресурс DSG, следует выделить необходимость активно нажимать на педаль тормоза при переключении режимов. В том случае, если тормоз не выжат полностью, DSG не до конца размыкает диски сцепления, тем самым увеличивается износ.
    Также правило перехода на «нейтралку» при остановках, актуальное для «однодисковых» роботов, в меньшей степени затрагивает DSG.  Другими словами, переключаться в режим N на светофорах и при простоях до 60 сек. нет необходимости, так как частые переключения только увеличивают износ. Более того, при полностью нажатом тормозе коробка сама размыкает сцепление.

    Нужно знать, что коробка DSG (особенно 7-и ступенчатая) «боится» пробуксовок даже больше, чем АКПП. Это значит, что буксовать в грязи, на льду, при старте с места в ручном режиме и т.д. запрещено.

    Рекомендуем также прочитать статью о том, как устроена коробка DSG. Из этой статьи вы узнаете об устройстве коробки передач DSG, а также о принципах работы и особенностях КПП данного типа.

    Также при постановке в режим «паркинг» необходимо пользоваться стояночным тормозом, чтобы продлить срок службы ограничителя (блокировочного механизма), который препятствует откату автомобиля. Переключения между режимами должны быть плавными, с небольшой задержкой около 1 секунды. За это время электроника вполне успеет «подстроиться».

    • Следует добавить, что автомобиль с DSG не следует перегружать буксировкой прицепа или другого транспорта, а также перевозкой различных грузов в самом авто. На практике, изначально тяжелая машина с DSG-7 (например, Skoda Superb) с полным салоном пассажиров и дополнительным грузом может весить около двух тонн. С учетом того, что коробка не рассчитана на большие нагрузки, такой робот может неожиданно выйти из строя.

    Что касается DSG-6, данная КПП более вынослива и устанавливается в паре с мощными двигателями. Однако и это не означает, что машину с подобной трансмиссией можно постоянно использовать в качестве буксира. 

    Советы и рекомендации

    Прежде всего, коробка DSG нуждается в обслуживании, причем чаще, чем МКПП. Например, в DSG-6 сцепление работает в масле, также достаточно большой и сам объем смазочной жидкости.

    По этой причине замена масла в DSG должна производиться каждые 60 тыс. км. пробега. Параллельно меняется и фильтр коробки передач. При этом без должного опыта и оборудования лучше отказаться от самостоятельной замены в условиях гаража.

    Еще добавим, что если машина с ДСГ застряла в грязи  или снегу, нужно воздержаться от интенсивных попыток выехать «в раскачку». Лучше перевести коробку в режим N и воспользоваться сторонней помощью, то есть вытащить или вытолкать автомобиль.

    Если же возникла необходимость буксировки авто с DSG, нужно придерживаться правил и рекомендаций, буксировать машину с разрешенной скоростью и только на короткие расстояния. Информация обычно содержится в мануале.

    Что в итоге

    Как видно, эксплуатация DSG достаточно сильно напоминает использование классического гидромеханического автомата АКПП. При этом есть и отличия. Например, DSG позволяет переключиться из режима D в R без небольшой задержки в N. Однако что касается пробуксовок, роботизированная трансмиссия к ним наиболее чувствительна.

    Рекомендуем также прочитать статью о том, что такое коробка AMT. Из этой статьи вы узнаете об устройстве и принципах работы механической автоматизированной трансмиссии, а также о ее преимуществах и недостатках.

    Также следует учитывать, что робот с двумя сцеплениями достаточно сложный агрегат в плане конструкции. При этом в сравнении с другими типами трансмиссии ремонт DSG часто получается не только затратным, но и проблемным. Причина — далеко не каждый автосервис способен качественно отремонтировать DSG.

    В качестве итога отметим, что даже с учетом всех сложностей и потенциальных проблем, коробка DSG все равно является наиболее предпочтительным вариантом при выборе нового авто.

    Также сам производитель VAG постоянно дорабатывает конструкцию, вносит изменения в алгоритмы работы КПП, совершенствует прошивки электронного блока и т.д. В результате можно рассчитывать на повышение надежности и достаточно продолжительный срок службы коробки передач.

    Как правильно ездить на автомобиле с коробкой DSG, чтобы продлить её ресурс

    Роботизированные коробки переключения передач становятся все более популярными благодаря быстрому переключению скоростей и экономичности. Но многие автолюбители с недоверием относятся к «роботам», да и негативных отзывов об этом типе трансмиссии довольно много. На сегодняшний день самой распространенной являются КПП DSG, которые устанавливаются на большинство автомобилей Volkswagen, Skoda, Seat и другие.

    Чем же обусловлено большое количество поломок? Дело в том, что роботизированная коробка конструктивно отличается от автомата и вариатора, соответственно, имеет и свои особенности эксплуатации. Разберемся, чего нельзя делать с коробкой DSG и как продлить срок службы этого агрегата.

    Сухое и мокрое сцепление

    Коробки с сухим сцеплением конструктивно напоминают обычную механику. Диск сцепления напрямую смыкается с маховиком. В «мокрых» коробках циркулирует охлаждающая жидкость, которая понижает температуру деталей при интенсивной работе.

    «Сухие» коробки устанавливаются на автомобили, которые не отличаются большой мощностью. Такая трансмиссия рассчитана на крутящий момент не более 250 Нм. Многие автовладельцы считают, что этого недостаточно, поэтому делают чип-тюнинг двигателя. В результате трансмиссия быстро выходит из строя.

    Следует помнить, что сухое сцепление не рассчитано на агрессивную манеру вождения. Им оснащаются экономичные городские автомобили, а не спорткары. Если в течение продолжительного времени резко разгоняться и пытаться выжать из автомобиля максимум его возможностей, детали сцепления перегреваются и преждевременно выходят из строя. После коротких эпизодов резкого нажатия на педаль акселератора нужно перестраиваться на спокойную манеру езды. Это даст трансмиссии остыть.

    Мокрое сцепление не страдает от перегрева. Циркулирующая жидкость забирает лишнее тепло и защищает детали от повреждения. Владельцам такой роботизированной КПП можно себе позволить ездить более агрессивно.

    Как правильно двигаться в городских пробках

    Движение в плотном городском трафике никак не влияет на срок службы АКПП, но для «робота» может быть губительным, если не соблюдать простые правила. Дело в том, что у роботизированных коробок, в отличие от автомата, есть сцепление. При постоянном движении в пробке по несколько метров оно преждевременно изнашивается. Это объясняется неизбежной его пробуксовкой при начале движения. Каждый раз, отпуская педаль тормоза и подтягиваясь на несколько сантиметров ближе к впереди стоящему автомобилю, владелец DSG приближается к визиту в автосервис.

    Вопреки распространенному мнению, при движении в пробке не нужно ставить селектор в положение «N», достаточно поставить ногу на тормоз. В этом случае диск сцепления и маховик размыкаются автоматически. Но для того, чтобы трансмиссия жила долго, нужно каждый раз дожидаться, пока дистанция до переднего автомобиля будет не менее нескольких метров.

    Правильное торможение

    Резкое нажатие на тормоз при езде накатом либо в момент торможения двигателем значительно сокращает срок службы трансмиссии. Безусловно, при необходимости экстренного торможения вряд ли кто-то думает о ресурсе коробки, но в повседневных поездках не следует поступать таким образом. Торможение должно быть плавным, только в этом случае диск сцепления и маховик полностью разомкнутся и не будут подвергаться повышенным механическим нагрузкам.

    Быстрый старт: быть или не быть?

    Любители динамичного разгона часто стартуют с места, одновременно выжимая газ и тормоз. Это делается для того, чтобы увеличить обороты двигателя, а затем отпустить тормоз и максимально быстро рвануть с вперед. Этот прием не подходит для роботизированных коробок.

    Современные «роботы» оснащены защитным механизмом. При нажатии на тормоз электроника препятствует смыканию диска сцепления с маховиком, поэтому обороты двигателя расти не будут. Автомобиль в такой ситуации не пострадает, но и смысла в данной манипуляции нет никакого.

    Хуже обстоит дело на машинах, где подобная защита не предусмотрена. При нажатии на газ диски смыкаются, но педаль тормоза не дает автомобилю двинуться с места. В результате происходит пробуксовка дисков, появление на них повреждений и преждевременная выработка ресурса моховика.

    Резкое изменение скорости

    «Робот» DSG c двойным сцеплением работает следующим образом: одно сцепление отвечает за четные передачи, другое — за нечетные. Электроника подстраивается под манеру вождения водителя, заранее включает нужную скорость, а затем в нужный момент времени просто включает сцепление. Соответственно, если вы нажимаете на газ, трансмиссия готовится включить повышенную передачу, если тормозите — пониженную. При агрессивной езде с резкими торможениями после разгона и наоборот автоматика не успевает выбирать нужную скорость и переключает передачи в экстренном режиме. Это приводит к ударам по диску сцепления, появлению на нем повреждений и сокращению срока службы.

    Если вы хотите пощекотать нервы, выбирайте ручной режим переключения передач. Это позволит даже при резких изменениях скорости выбирать корректную скорость и не вводить в заблуждение автоматику, настроенную на комфортный, предсказуемый стиль езды.

    Буксировка и пробуксовка

    Коробки DSG не рассчитаны на большие нагрузки. Обычно они устанавливаются на автомобили, которые вместе с водителем и пассажирами весят не более двух тонн. Если вы хотите буксировать другое транспортное средство или тяжелый прицеп с помощью своего авто, помните, что «робот» может не справиться с такими перегрузками. Если не хотите рисковать трансмиссией, откажитесь от этой затеи.

    Владельцы автомобилей с роботизированной трансмиссией должны знать, что этот агрегат боится пробуксовок. Такая ситуация может возникнуть при попытке тронутся с места на скользкой поверхности, а также при резком старте в ручном режиме. К сожалению, в наших реалиях иногда не удается избежать пробуксовки, но все же постарайтесь. Автомобиль с роботизированной КПП — это не внедорожник, поэтому подумайте перед тем, как ехать в грязь или на скользкую колею.

    Правильное переключение режимов и парковка

    DSG не любит резких движений. Именно поэтому переключать режимы нужно плавно. Автоматика быстро перестраивается, но для этого ей нужно некоторое время. Всего секундная задержка при изменении положения селектора значительно продлит срок службы трансмиссии. Не стоит дергать ручку КПП.

    При стоянке автомобиль удерживается на месте с помощью блокировочного механизма. Но если вы часто ставите машину под уклон, рекомендуется пользоваться стояночным тормозом. Это снимает нагрузку с ограничителя и продлевает срок его службы. Но помните, что зимой тормозные колодки при использовании ручного тормоза могут примерзнуть.

    Обслуживание

    Производитель заявляет, что «робот» DSG не нуждается в обслуживании, а залитое на заводе масло рассчитано на весь срок эксплуатации. Но опыт мастеров говорит об обратном. Если вы хотите, чтобы трансмиссия служила максимально долго, каждые 50-60 тысяч пробега необходимо производить замену трансмиссионной жидкости.

    Перед тем, как сесть за руль своего новенького авто, обязательно прочитайте рекомендации по использованию роботизированной коробки DSG. Ее эксплуатация схожа с классическим автоматом, но некоторые нюансы все-таки есть. Если их учитывать, трансмиссия будет исправно служить длительное время и радовать плавностью и быстротой переключения передач.

    Как правильно эксплуатировать коробку 7DSG? — Volkswagen Passat Variant, 1.4 л., 2010 года на DRIVE2

    Автоматическая коробка DSG7 снабжена двумя многодисковыми сцеплениями, одно из которых «отвечает» за нечетные скорости: 1-3-5-7, другое – за четные: 2-4-6 + передача заднего хода. При неправильной эксплуатации коробки больше изнашивается сцепление, отвечающее за нечетные скорости. Неравномерный износ сцеплений приводит к дисбалансу работы всей коробки.Это проявляется в частности в жестком переключении скоростей и вибрациях.

    Правила эксплуатация коробки DSG7.1. Главное правило – правильное торможение (особенно в пробках). Тормоза чувствительные, даже от легкого прикосновения к педали тормоза машина ощутимо притормаживает. Однако при таком притормаживании диски сцепления не размыкаются, а продолжают вращаться. Сцепление «пробуксовывает» как на механической коробке передач. Более явное нажатие на педаль тормоза заставляет сцепление выключаться.2. С какой силой надо жать на педаль тормоза, чтобы сцепление выключалось? Приблизительно в половину той силы, с какой нужно нажимать, чтобы сработал антиоткатный механизм при остановке на склоне.Для самоконтроля: если машина после снятия ноги с тормоза сразу, без микро-задержки поехала, то диск сцепления не был отжат во время остановки. Если же машина поехала после микро-задержки, значит сцепление не работало, отдыхало.3. При трогании с места необходимо выдержать ту самую микро-паузу, дать диску сцепления как следует сцепиться с рабочей поверхностью, и потом уже можно давить педаль в пол, ускоряться, и DSG7 безразлично, с какой частотой происходят переключения скоростей. То есть способ езды – агрессивный или умеренный – не влияет ни на износ сцеплений, ни на работу коробки в целом.4. Многие в пробках используют режимы S или «типтроник». Это позволяет избавить DSG7 от необходимости частых переключений передач 1-2-3-2-3-2-1-. на малых оборотах двигателя и повышает комфортность движения автомобиля в пробке.

    5. На разбитых проселочных дорогах рекомендуется использовать режим «типтроник».

    Правильная Эксплуатация ДСГ

    Все чаще автопроизводители устанавливают на свои модели робототезированные коробки передач.  Робот с двумя сцеплениями имеет ряд безусловных преимуществ и особенностей перед традиционной АКПП:

    • Быстрые переключения
    • Экономия топлива
    • Экологические нормы и др.

    Если вам интересно как правильно ездить на других популярных трансмиссиях переходите по ссылкам: АКПП (стандартный гидротрансформатор), Вариатор (бесступенчатая трансмиссия), МКПП (мешалка)

    Как управлять ДСГ в пробке

    • Не стоит ставить селектор в положение N. Сейчас современные роботы разрывают сцепление просто при нажатии тормоза (выходят из зацепления). То есть автомобиль при нажатом тормозе — стоит на нейтралке.
    • Не нужно двигаться по пол метра нажимая газ – тормоз. (Каждый раз отпуская тормоз — вы словно отпускаете сцепление, оно автоматически начинает соприкасаться с маховиком, а также прокручивается из-за неполного соприкосновения. Когда вы отпустили тормоз и едите уже со скоростью 5-6 км/час тогда произошло полное зацепление).
    • Отпустите впереди идущий автомобиль метров на 5 перед собой и двигайтесь за ним на малой скорости, на первой передаче.
    • Ресурс ДСГ 6 и ДСГ 7 напрямую зависит: будет ли робот в пробке переключаться на вторую скорость. Переключения первая — вторая, вторая — первая в пробке «убивает» (изнашивается и перегревается сцепление и маховик) любую робототезированную коробку с двумя сцеплениями.

    Как тормозить на ДСГ

    Когда вы едете накатом, сцепление жестко связано с маховиком. Если в этот момент резко нажать на тормоз, нагрузка от быстрого снижения скорости идет на коробку. Сцепление не успевает разомкнуться и на маховике образуются задиры. В последствии DSG начинает дрожать и дергаться. Распространенным примером является резкое снижение скорости перед светофором. При движении накатом плавно нажимайте тормоз, дайте сцеплению спокойно разомкнуться.

    Как правильно пользоваться ручным режимом

    На робототезированных коробках передач в большинстве случаев есть ручной режим. Подвох в том, что автоматика не до конца понимает какую следующею передачу вы хотите включить (наверх или вниз). Если нажимать газ — коробка готовит повышенную, если тормозить наоборот — пониженную.

    Что происходит если вы делаете это наоборот. Допустим вы едете на 4 передаче и плавно разгоняетесь. Автоматика подготовила для включения 5 передачу. Но вы переходите на третью. В этот момент коробке приходится резко менять подготовленную скорость на пониженную. Переключения происходит по факту (как на одно дисковом роботе). На небольшом газу эта операция не опасна. Но если неправильно переключаться при интенсивной езде по городу, происходит интенсивный износ маховика. Что ведет все к тем же вибрациям и «дергатне».

    Старт с двух педалей

    Современные производители уже сделали «защиту от дурака» и научили автоматику не реагировать на такие манипуляции при нажатой педали тормоза.

    Если не хотите убить свою коробку — не делайте так. Особенно если эта коробка с сухими сцеплениями.

    Для того чтобы быстро ускориться просто резко нажмите на педаль газа.

    DSG на такое не рассчитана

    Если у вашего автомобиля не большая мощность. Скорее всего у вас установлена коробка с сухим сцеплением. Данная коробка не рассчитана на гонки от светофора до светофора. Ее задача экономить вам топливо.

    На DSG 7 сухое сцепление и нету дополнительного охлаждения. Все охлаждение в данном узле — это теплоемкость сцепления и маховика. И если вы начнете гонять, то этот предел по охлаждению наступит очень быстро. ДСГ рассчитана на быстрые ускорения, как же без них. Для продления ресурса коробки соблюдайте соотношение 3 к 1му.

    Пять минут наваливаете, пятнадцать ездите спокойно.

    Ну и не думайте о том, что в любой момент она крякнет — вот вам ресурсные испытания от Авторевю:

    Надеюсь эта статья по правильной эксплуатации ДСГ была вам полезна!!!

    Роботизированная коробка передач — плюсы и минусы

    Покупатели при выборе автомобиля большое значение уделяют коробке передач, помимо других его характеристик. Естественно желание людей — ездить с комфортом.

    В последнее время современные технологии представляют вниманию новые способы управления автомобилем. На смену механики приходит автоматика. Одним из новшеств является роботизированная коробка переключения передач.

    Что это такое и как работает?

    Роботизированной коробкой передач считается механическая КП, которая имеет автоматизированные функции управления сцеплением и переключением передач. По другому ее называют коробка-робот. Такие коробки имеют электрический или гидравлический привод сцепления и передач. Зависит от конкретного производителя.

    Стоит для начала разобраться, как работает роботизированная коробка передач. Принцип её работы такой же, как у механической. Различие в том, что работой сцепления и выбором передач занимаются сервоприводы (актуаторы). В составе которых находится электромотор с редуктором и исполнительный механизм. Также есть и гидравлические актуаторы.

    1 — блок управления; 2 — сервопривод сцепления; 3 — сервопривод переключения передач; 4 — датчик частоты вращения первичного вала.

    В чем заключаются основные особенности управления роботизированной коробкой передач?

    Роботизированная коробка передач имеет свои особенности управления. К основной можно отнести следующий фактор: управление производится путем использования специального блока на электронной основе, который воздействует на два актуатора.

    Первый сервопривод отвечает за сцепление, а второй руководит работой синхронизаторов, которые отвечают за включение нужных передач. Этот подход позволяет освободить водителя от нажатия на педаль сцепления. Все функции берет на себя электроника.

    Работа умной коробки может осуществляться в:

    • автоматическом;
    • ручном режимах.

    При автоматическом, смена передач происходит по команде компьютера, который учитывает многие показатели (обороты двигателя, скорость, данные систем ABS, ESP и других). При ручном режиме, человек с помощью рычага селектора или подрулевых переключателей подает команду на переключение.

    Видео: принцип работы сцепления и переключения передач на роботизированной коробке передач.

    Плюсы и минусы использования роботизированной коробки передач

    Появилась такая возможность управления коробкой передач относительно недавно, но при этом довольно быстро приобрела своих приверженцев. Ведь ездить на роботизированной коробке передач по отзывам некоторых — удобно и комфортно.

    Но, использование роботизированной коробки передач имеет свои плюсы и минусы, как и любой другой вариант. Естественно, о них следует знать, при выборе варианта управления. Выявить такие моменты позволили многочисленные тестирования коробки-робота.

    Плюсы использования агрегата:

    1. Конструкция этой коробки передач весьма надежна. Основой ее остается механика, которая испытана временем и изучена. Вместе с этим по надежности она превосходит вариаторную и автоматическую системы.
    2. Считается, что использование роботизированной коробки передач способствует экономии топлива. Такая экономия может составлять до 30 процентов.
    3. Коробка робот требует использования меньшего количества масла, достаточно 2-3 литров, тогда как вариатору требуется порядка 7 литров. Все это приводит к большей экономии средств.
    4. Число передач соответствует количеству передач механической коробки.
    5. В основе роботизированной коробки переключения передач та же самая механика. Это дает дополнительную возможность свободного и простого ремонта, который может произвести практически любой автомобильный слесарь. Поэтому проблем с ремонтом не возникнет, по крайней мере, большую часть распространенных поломок можно ликвидировать быстро и качественно в обычной автомастерской.
    6. Ресурс сцепления увеличен почти на 40 процентов, если сравнение производить с механикой. Это весьма существенная разница. Причем дело не только в экономии, но и в повышенной безопасности.
    7. В условиях города, когда возникают постоянные пробки, и на крутых подъемах весьма кстати будет функция ручного переключения передач, которая присутствует в коробке-роботе. Эта функция позволяет вспомнить о обычной механике, по которой многие автовладельцы скучают.

    Наряду с достоинствами имеются и недостатки данного вида коробки передач. К ним можно отнести:

    1. Главным недостатком многие автовладельцы считают невозможность перепрограммировать агрегат, с целью увеличить динамику или сэкономить ресурсы. Это также не позволяет подстроить коробку передач под свой стиль езды. Следует привыкнуть к манере работы определенной конструкции, чтобы использовать ее с удобством. Но русские умельцы находят выход из любой ситуации. После срока гарантийного использования автомобиля они просто меняют прошивку в блоке электронного управления.
    2. Скорость переключения передач робота несколько снижена, реакция замедленная. Это связано с некоторыми издержками программирования, как в любом автомате.
    3. При поездке по городу, в условиях пробок и по неровной местности необходимо переключаться на ручное управление. Иначе происходит быстрый износ сцепления и срок эксплуатации роботизированной коробки передач существенно снижается.
    4. В некоторых случаях при переключении передач можно ощутить рывки. Это объясняется тем, что не сбрасывается газ перед моментом переключения. Устранить эту неприятность можно, если нажимать педаль газа не полностью.
    5. На горке зачастую размыкается сцепление — это объясняется его перегревом. Поэтому для подъемов также лучше использовать ручной режим переключения.

    Видео: как правильно ездить на роботизированной коробке передач.

    Советы по выбору

    Прежде чем покупать автомобиль с коробкой-роботом, стоит собрать как можно больше информации по работе конкретной модели. Некоторые из них имеют постоянные, ставшие уже нормой «глюки». Например, «задумчивость» некоторых роботов составляет около 2 секунд¸ то есть переключение передач происходит с определенным опозданием.

    К проблемам можно отнести и излишнюю индивидуальность агрегатов. Даже одинаковые роботизированные коробки передач могут существенно отличаться. Такие серьезные отличия «лечатся», как правило, с помощью перепрошивки. Причем не стоит надеяться, что все само пройдет, лучше сразу обратиться к специалисту.

    Но не всё так сумрачно. Например, по отзывам о роботизированной коробке передач Лада-Гранты больше половины владельцев этого автомобиля довольны таким вариантом управления. Считая, что с ним машина экономичнее и быстрее.

    Видео: на АВТОВАЗе запущено производство LADA Granta с роботизированной КПП (АМТ).

    Заключение. Думаю, что будущее все-таки за вариатором, а робот не приживется, к тому же он проигрывает и автомату. А вы, как думаете?!!

    Загрузка…

    Роботизированная коробка передач — устройство и принцип работы МКПП

    Ни одна современная машина не может плавно заводиться и двигаться, если в ее устройстве нет трансмиссии. Сегодня существует большое количество всевозможных коробок передач, которые не только позволяют водителю выбрать вариант, соответствующий его материальным возможностям, но и дают возможность получить максимальный комфорт от вождения.

    Кратко об основных типах трансмиссии рассказано в отдельном обзоре … Теперь поговорим подробнее о том, что такое роботизированная коробка передач, ее основные отличия от механической коробки передач, а также рассмотрим принцип работы этого агрегата.

    Что такое роботизированная коробка передач

    Работа коробки передач практически идентична механическому аналогу за исключением некоторых особенностей. Устройство робота включает в себя множество деталей, составляющих уже знакомую всем механическую версию ящика. Основное отличие роботизированного в том, что управление им микропроцессорного типа.В таких коробках передач переключение передач осуществляется электроникой на основании данных с датчиков двигателя, педали газа и колес.

    Роботизированный ящик тоже можно назвать автоматом, но это неправильное название. Дело в том, что АКПП часто используют как обобщающее понятие. Так, у этого же вариатора есть автоматический режим переключения передаточных чисел, так что у некоторых он еще и автоматический. По сути, по устройству и принципу работы робот ближе к механической коробке.

    Внешне отличить АКПП от МКПП невозможно, так как они могут иметь идентичный селектор и кузов. Вы можете проверить трансмиссию только во время движения автомобиля. У каждого типа агрегата свои особенности работы.

    Основное назначение роботизированной трансмиссии — максимально облегчить вождение. Водителю не нужно самостоятельно переключать передачи — эту работу выполняет блок управления. Помимо комфорта, производители АКПП стремятся удешевить свою продукцию.Сегодня робот является самым бюджетным типом коробки передач после механики, но он не обеспечивает такого комфорта вождения, как вариатор или автомат.

    Принцип работы роботизированной коробки передач

    Роботизированная трансмиссия может переключаться на следующую скорость автоматически или полуавтоматически. В первом случае на микропроцессорный блок поступают сигналы от датчиков, на основе которых запускается алгоритм, запрограммированный производителем.

    Большинство коробок передач оснащено ручным переключателем.В этом случае скорости все равно будут включаться автоматически. Единственное, водитель может самостоятельно сигнализировать момент включения повышенной или пониженной передачи. Некоторые автоматические трансмиссии типа Tiptronic имеют похожий принцип.

    Чтобы увеличить или уменьшить скорость, водитель перемещает рычаг селектора в сторону + или в сторону -. Благодаря этой опции некоторые люди называют эту передачу последовательной или последовательной.

    Роботизированная коробка работает по следующей схеме:

    1. Водитель включает тормоз, запускает двигатель и переводит переключатель режимов движения в положение D;
    2. Сигнал с блока идет на блок управления коробкой;
    3. В зависимости от выбранного режима блок управления активирует соответствующий алгоритм, по которому блок будет работать;
    4. В процессе движения датчики посылают в «мозг робота» сигналы о скорости движения транспортного средства, о загруженности силового агрегата, а также о текущем режиме коробки передач;
    5. Как только показатели перестают соответствовать программе, установленной на заводе, блок управления дает команду на переключение на другую передачу.Это может быть как увеличение, так и уменьшение скорости.

    Когда водитель управляет автомобилем с механикой, он должен пощупать свое транспортное средство, чтобы определить момент перехода на другую скорость. В роботизированном аналоге происходит аналогичный процесс, только водителю не нужно думать, когда перевести рычаг переключения передач в нужное положение. Вместо этого это делает микропроцессор.

    Система отслеживает всю информацию со всех датчиков и выбирает оптимальную передачу для конкретной нагрузки.Чтобы электроника могла переключать передачи, в трансмиссии есть гидромеханический привод. В более распространенном варианте вместо гидромеханики установлен электропривод или сервопривод, который подключает / отключает сцепление в коробке (кстати, это имеет некоторое сходство с автоматической коробкой передач — сцепление находится не там, где находится стоит в МКПП, а именно возле маховика, а вот в корпусе самой трансмиссии).

    Когда блок управления подает сигнал о том, что пора переключиться на другую скорость, первым активируется первый электрический (или гидромеханический) сервопривод.Он расцепляет поверхности трения сцепления. Затем второй сервопривод перемещает шестерни в механизме в желаемое положение. Затем первый медленно отпускает сцепление. Такая конструкция позволяет механизму работать без участия водителя, поэтому в машине с роботизированной трансмиссией педаль сцепления отсутствует.

    Многие коробки переключения передач имеют принудительные положения передач. Этот так называемый типтроник позволяет водителю самостоятельно контролировать момент переключения на более высокую или пониженную скорость.

    Роботизированное устройство коробки передач

    Сегодня существует несколько типов роботизированных трансмиссий для легковых автомобилей. В некоторых приводах они могут отличаться друг от друга, но основные части остаются идентичными.

    Вот узлы, входящие в коробку передач:

    1. Сцепление. В зависимости от производителя и модификации агрегата это может быть одна деталь с фрикционной поверхностью или несколько подобных дисков. Чаще всего эти элементы располагаются в теплоносителе, который стабилизирует работу агрегата, предохраняя его от перегрева.Преселективный или двойной вариант считается более эффективным. В этой модификации, пока включена одна передача, вторая готовится к включению следующей скорости.
    2. Основная деталь — обычная механическая коробка. Каждый производитель использует свои собственные разработки. Например, робот марки Mercedes (Speedshift) внутренне представляет собой автоматическую коробку передач 7G-Tronic. Единственное отличие агрегатов в том, что вместо гидротрансформатора используется муфта с несколькими фрикционными дисками.У BMW похожий подход. Его коробка передач SMG основана на шестиступенчатой ​​механической коробке передач.
    3. Привод сцепления и трансмиссии. Возможны два варианта — с электроприводом или гидромеханический аналог. В первом случае выжимание сцепления осуществляется электродвигателем, а во втором — гидроцилиндрами с электромагнитными клапанами. Электропривод работает медленнее гидравлики, но не требует поддержания постоянного давления в магистрали, от которой работает электрогидравлический тип.Гидравлический робот переходит на следующую ступень намного быстрее (0,05 секунды против 0,5 секунды у электрического аналога). Электрическая коробка передач в основном устанавливается на бюджетные автомобили, а гидромеханическая коробка передач устанавливается на спорткары премиум-класса, так как в них чрезвычайно важна скорость переключения передач без прерывания подачи питания на ведущий вал.
    4. Датчик. Таких деталей в роботе очень много. Они контролируют множество различных параметров трансмиссии, например, положение вилок, обороты входного и выходного валов, в каком положении заблокирован селекторный переключатель, температуру охлаждающей жидкости и т. Д.Вся эта информация поступает на устройство управления механизмом.
    5. ЭБУ — микропроцессорный блок, в который запрограммированы разные алгоритмы с разными показателями, поступающими от датчиков. Этот блок подключается к главному блоку управления (оттуда поступают данные о работе двигателя), а также к системам электронной блокировки колес (ABS или ESP).
    6. Приводы — гидроцилиндры или электродвигатели в зависимости от модификации коробки.

    Особенности работы РКПП

    Для того, чтобы автомобиль заводился плавно, водитель должен правильно использовать педаль сцепления.После того, как он включил первую или заднюю передачу, ему нужно плавно отпустить педаль. Когда водитель почувствует зацепление дисков, отпуская педаль, он может добавить обороты двигателя, чтобы автомобиль не глохнул. Так работает механика.

    Идентичный процесс происходит в роботизированном аналоге. Только в этом случае от водителя не требуется большого мастерства. Ему нужно только переместить переключатель коробки в соответствующее положение. Автомобиль начнет движение в соответствии с настройками блока управления.

    Самая простая одинарная модификация работает как классическая механика. Однако при этом наблюдается наличие одной проблемы — электроника не фиксирует обратную связь от сцепления. Если человек умеет определять, насколько плавно нужно отпускать педаль в том или ином случае, то автоматика работает более жестко, поэтому движение автомобиля сопровождается ощутимыми рывками.

    Особенно это ощущается в модификациях с электроприводом исполнительных механизмов — при переключении передачи муфта будет в разомкнутом состоянии.Это будет означать перерыв в подаче крутящего момента, из-за чего автомобиль начнет тормозить. Поскольку скорость вращения колес уже меньше соответствует включенной передаче, возникает небольшой рывок.

    Новаторским решением этой проблемы стала разработка модификации с двойным сцеплением. Ярким представителем такой трансмиссии является Volkswagen DSG. Давайте подробнее рассмотрим его особенности.

    Характеристики роботизированной коробки передач DSG

    Аббревиатура означает коробку передач с прямым переключением передач.По сути, это две механические коробки, установленные в одном корпусе, но с одной точкой подключения к шасси машины. У каждого механизма своя муфта.

    Основная особенность данной модификации — преселективный режим. То есть, пока первый вал работает с включенной шестерней, электроника уже подключает соответствующие шестерни (при ускорении для увеличения передачи, при замедлении — для понижения) второго вала. Главному исполнительному механизму нужно только отключить одно сцепление и подключить другое.Как только от блока управления поступает сигнал о переходе на другую ступень, рабочая муфта размыкается, и сразу подключается вторая с уже включенными передачами.

    Такая конструкция позволяет ездить без сильных рывков при разгоне. Первая разработка преселективной модификации появилась в 80-х годах прошлого века. Правда, тогда роботов с двойным сцеплением устанавливали на раллийные и гоночные автомобили, в которых скорость и точность переключения передач имеют большое значение.

    Если сравнивать коробку DSG с классическим автоматом, то у первого варианта больше преимуществ. Во-первых, за счет более привычного строения основных элементов (производитель может взять за основу любой готовый механический аналог) такая коробка будет дешевле в продаже. Тот же фактор влияет на обслуживание агрегата — механика надежнее и легче ремонтируется.

    Это позволило производителю установить инновационную трансмиссию на бюджетные модели своей продукции.Во-вторых, многие владельцы автомобилей с такой коробкой передач отмечают повышение экономичности автомобиля по сравнению с идентичной моделью, но с другой коробкой передач.

    Инженеры концерна VAG разработали два варианта трансмиссии DSG. Один из них имеет маркировку 6, а другой — 7, что соответствует количеству шагов в коробке. Также шестиступенчатый автомат использует мокрое сцепление, а семиступенчатый аналог — сухое. Более подробно о плюсах и минусах коробки DSG, а также о том, чем еще модель DSG 6 отличается от седьмой модификации, рассказывается в отдельной статье .

    Достоинства и недостатки

    Рассматриваемый тип трансмиссии имеет как положительные, так и отрицательные стороны. К достоинствам коробки можно отнести:

    • Такая трансмиссия может использоваться в паре с силовым агрегатом практически любой мощности;
    • По сравнению с вариатором и автоматом роботизированная версия дешевле, хотя это довольно инновационная разработка;
    • Роботы надежнее других автоматических трансмиссий;
    • За счет внутреннего сходства с механикой легче найти специалиста, который возьмет на себя ремонт агрегата;
    • Более эффективное переключение передач позволяет использовать мощность двигателя без критического увеличения расхода топлива;
    • За счет повышения эффективности машина выбрасывает меньше вредных веществ в окружающую среду.

    Несмотря на явные преимущества перед другими автоматическими трансмиссиями, у робота есть несколько существенных недостатков:

    • Если автомобиль оборудован однодисковым роботом, то поездку на таком транспортном средстве нельзя назвать комфортной. При переключении передач будут ощутимые рывки, как будто водитель резко нажимает педаль сцепления на механику.
    • Чаще всего в агрегате выходят из строя сцепление (меньшая плавность зацепления) и исполнительные механизмы. Это усложняет ремонт трансмиссий, так как у них небольшой рабочий ресурс (около 100 тысяч километров).Редко, когда сервоприводы можно отремонтировать, а новый механизм стоит дорого.
    • Что касается сцепления, то ресурс диска тоже очень маленький — около 60 тысяч. Причем примерно на половину ресурса нужно проводить «соединение» коробки по условию поверхности трения деталей.
    • Если говорить о преселективной модификации DSG, то она оказалась надежнее за счет меньшего времени на переключение скоростей (благодаря этому автомобиль не так сильно тормозит).Несмотря на это, у них все же страдает адгезия.

    С учетом перечисленных факторов можно сделать вывод: по надежности и долговечности механике пока нет равных. Если упор делается на максимальный комфорт, то лучше выбирать вариатор (в чем его особенность, читайте здесь ). Следует учитывать, что такая трансмиссия не даст возможности экономить топливо.

    В заключение предлагаем короткое видео-сравнение основных типов передач — их плюсы и минусы:

    ПОДОБНЫЕ СТАТЬИ

    Frontiers | Компактные редукторы для современной робототехники: обзор

    Введение

    Промышленные роботы составляют основу нескольких крупных традиционных производств, включая автомобилестроение и электронику.Сегодня многие регионы мира видят реальную возможность возродить обрабатывающую промышленность, внедряя роботов на малых и средних предприятиях (МСП) и в вспомогательные услуги, как правило, в здравоохранении (SPARC, 2015).

    Для крупномасштабных промышленных сред с высокой степенью автоматизации преимущество роботизированных решений по сравнению с людьми-операторами в основном заключается в (i) большей доступности и (ii) способности перемещать — обычно большие — полезные грузы с исключительной точностью позиционирования и с высокой скоростью.Эти аспекты имеют решающее значение при разработке и выборе подходящих технологий для промышленного робота, особенно для первичных двигателей и трансмиссий, обеспечивающих движение этих устройств.

    Применения в производстве и персональном обслуживании малых и средних предприятий бросают вызов этой традиционной парадигме робототехники. Ключ к успеху в этих новых приложениях лежит в очень высокой степени гибкости, необходимой для обеспечения безопасного и эффективного прямого сотрудничества с людьми для достижения общих целей.Эта цель требует, чтобы роботы сначала развили способность безопасно взаимодействовать с людьми в дисциплине, обычно называемой pHRI — физическое взаимодействие человека и робота.

    pHRI оказывает широкое влияние на срабатывание роботов. Опыт, накопленный за последние десятилетия, в основном в области робототехники в сфере здравоохранения, показывает, что для безопасного и эффективного взаимодействия с людьми роботы должны в основном двигаться, как люди, и, следовательно, жертвовать некоторыми из своих традиционных преимуществ с точки зрения полезной нагрузки, точности и скорости.Эта ситуация привела к обширным исследованиям в последние годы, охватывающим оптимальный выбор первичных двигателей и передач для срабатывания HRI (Zinn et al., 2004; Ham et al., 2009; Iqbal et al., 2011; Veale and Xie, 2016). ; Verstraten et al., 2016; Groothuis et al., 2018; Saerens et al., 2019).

    Эти работы относятся к более широкой области исследований, изучающих оптимизацию сцепления между первичным двигателем и коробкой передач для данной задачи в автоматических машинах. Краткий обзор основных разработок в этой области дает полезные сведения, позволяющие понять влияние коробки передач на общую производительность системы.Паш и Серинг (1983) определили важность инерции при срабатывании и предложили использовать передаточное число для согласования инерции двигателя и отраженной нагрузки в качестве средства минимизации потребления энергии для чисто инерционной нагрузки. Чен и Цай (1993) применили эту идею к области робототехники и определили результирующую способность к ускорению конечного эффектора как определяющий параметр. Ван де Стрете и др. (1998) разделили характеристики двигателя и нагрузки, чтобы распространить этот подход на общую нагрузку, и предоставили метод определения подходящих передаточных чисел для дискретного набора двигателей и коробок передач.Roos et al. (2006) изучали выбор оптимального привода для трансмиссии электромобилей, добавляя вклад КПД коробки передач. Giberti et al. (2010) подтверждают инерцию ротора, передаточное отношение, эффективность коробки передач и инерцию коробки передач как наиболее важные параметры для выбора срабатывания и предлагают графический метод оптимизации этого выбора для динамической задачи. Петтерссон и Олвандер (2009) снова сосредоточились на промышленных роботах и ​​представили метод, моделирующий коробку передач с упором на массу, инерцию и трение.Резазаде и Херст (2014) используют очень точную модель двигателя и включают фундаментальный критерий выбора полосы пропускания в дополнение к минимизации энергии. Дрессчер и др. (2016) исследуют влияние трения на планетарный редуктор, в котором кулоновское трение является доминирующим механизмом трения, и демонстрируют, как КПД редуктора обычно становится преобладающим над КПД двигателя при высоких передаточных числах.

    По сравнению с исходными моделями коробок передач, использовавшихся в этих работах, где коробки передач моделировались как идеальные передаточные числа, сложность моделей постепенно возрастала.Тем не менее, необходимо сделать важные — и нереалистичные — упрощения, чтобы добиться хорошей практической применимости этих методов. Таким образом, не учитываются важные эффекты, такие как жесткость на кручение и потерянное движение, в то время как модели инерции и эффективности коробки передач сильно упрощены. Это оправданный подход для множества приложений, где упрощенные методы могут помочь инженерам выбрать подходящие трансмиссии. Однако в HRI эти свойства слишком важны для пригодности коробки передач, и их нельзя так сильно упростить.

    Следовательно, необходим другой подход, чтобы предоставить полезные рекомендации по выбору коробки передач в HRI, избегая чрезмерной сложности задач оптимизации в этой области. Предоставление подробных сведений об эксплуатационных свойствах и характеристиках различных технологий редукторов для обоснованного выбора — еще один вариант, следуя традициям таких работ, как Schempf and Yoerger (1993) или Rosenbauer (1995). Следуя этому подходу, Siciliano et al. (2010), Ли (2014), Шейнман и др.(2016) и Pham and Ahn (2018) предоставляют интересные обзоры высокоточных редукторов для современной робототехники. Однако технологии не анализируются достаточно подробно, чтобы получить хорошее представление о сложных механизмах, в которых они влияют на выполнение роботизированной задачи.

    Основная цель этого обзора состоит в том, чтобы дополнить эти работы подробным анализом основных принципов, сильных сторон и ограничений доступных технологий. Помимо возможности прогнозирования будущего технологий редукторов в робототехнике, этот подход может помочь неспециалистам по редукторам определить подходящие технологии компактных редукторов для многофакторных требований новых робототехнических приложений (López-García et al., 2018). Для специалистов по коробкам передач из других областей этот анализ может помочь им получить полезную информацию о конкретных потребностях приложений HRI.

    Это исследование начинается с краткого описания основных требований к будущим роботизированным трансмиссиям, чтобы затем представить систему оценки, предназначенную для оценки пригодности и потенциала конкретной технологии коробок передач для этой области. Эта структура включает сильную перспективу pHRI и новый параметр — коэффициент скрытой мощности — для оценки эффективности, присущей определенной топологии редуктора.Эта новая структура используется в первую очередь для обзора традиционных технологий редукторов, используемых в промышленных роботах, и новых технологий передачи, которые в настоящее время находятся в процессе выхода на рынок. Наконец, в конце документа приводится краткое изложение выводов, сделанных в результате этого обзора, вместе с нашими выводами и рекомендациями.

    Система оценки роботизированных трансмиссий с расширенными возможностями HRI

    Контроль

    Управление роботизированными устройствами — очень широкая и сложная тема, которая является предметом обширной исследовательской литературы.В этом разделе мы ограничимся введением основных принципов линейности и отраженной инерции, которые являются основными для понимания влияния редуктора на управление.

    Хотя в целом скорость и точность являются противоречивыми требованиями, обычные робототехнические устройства превосходят в достижении высокой точности позиционирования на высокой скорости благодаря использованию жестких приводов с очень линейным поведением (Cetinkunt, 1991). Включение роботизированной трансмиссии влияет на сложность управления в основном двумя способами: вносит дополнительную нелинейность и сильно влияет на отраженную инерцию.

    Нелинейности, вызванные включением трансмиссии, принимают в основном форму люфта и / или трения и уменьшают полосу пропускания системы, создавая важные проблемы управления (Schempf, 1990). Утверждение о шестернях приводит к люфту, трению и (нежелательной) податливости, которые затрудняют точное управление. (Hunter et al., 1991) сегодня так же актуально, как и почти 30 лет назад. Для некоторых технологий большие кинематические ошибки передачи и, в частности, нелинейное трение также могут вызывать значительные нелинейности.

    Передачи также сильно влияют на отраженную инерцию системы. В роботизированном устройстве инерция первичного двигателя обычно на несколько порядков меньше, чем у полезной нагрузки, что делает систему нестабильной и создает серьезные проблемы с управлением. Добавление трансмиссии сильно снижает инерцию полезной нагрузки, которую видит первичный двигатель и которая отражается на него, на коэффициент, равный квадрату передаточного отношения трансмиссии. Таким образом, тщательный выбор трансмиссии может привести к более сбалансированной инерции на обеих сторонах трансмиссии, способствуя минимизации энергопотребления и созданию более надежной, стабильной и точной системы (Pasch and Seering, 1983).

    Отраженная инерция особенно важна, когда рабочие органы претерпевают быстрые и частые изменения скорости и / или крутящего момента, что очень часто встречается в задачах автоматизации и робототехники. В этих случаях вводится перспектива пропускной способности, чтобы подтвердить способность системы отслеживать эти изменения (Sensinger, 2010; Rezazadeh and Hurst, 2014). Это лежит в основе принципа управляемости задним ходом, способности системы демонстрировать низкий механический импеданс, когда она приводится в действие с естественной выходной мощности (с обратным приводом).Это особенно важно при частом двунаправленном обмене энергией между роботом и его пользователем, что типично для реабилитационных устройств или экзоскелетов. Как демонстрируют Ван и Ким (2015), управляемость коробки передач задним ходом включает в себя комбинированный эффект отраженной инерции, отраженного демпфирования и кулоновского трения, и, следовательно, это тесно связано с эффективностью коробки передач.

    Это подчеркивает важность для оценки управляющего воздействия определенной технологии коробки передач как ее способности передаточного числа, так и нелинейностей (люфт, трение), которые она вносит.

    Безопасность

    Промышленные роботы традиционно размещаются за забором в хорошо структурированной среде, где они могут воспользоваться преимуществами своих быстрых и точных роботизированных движений, не подвергая опасности целостность человека-оператора.

    Безопасный pHRI, включающий способность безопасно перемещаться в неструктурированной / неизвестной среде, обязательно тесно связан с управляемостью. Текущая стратегия, используемая робототехниками для достижения этой цели, состоит из формирования механического импеданса (Calanca et al., 2015), то есть позволяя контроллеру соответствия управлять сложным динамическим соотношением между положением / скоростью робота и внешними силами (Hogan, 1984).

    Принцип прост: чтобы обеспечить хорошую адаптацию к неопределенной среде, а также целостность человека-оператора / пользователя во время взаимодействия с роботизированным устройством, последний должен двигаться в соответствии с требованиями человека (Karayiannidis et al. др., 2015). Это подчеркивает важность импеданса и внутреннего соответствия (De Santis et al., 2008) и объясняет появление нового типа внутренне гибких исполнительных механизмов для pHRI (Ham et al., 2009), где требуется высокая степень соответствия (Haddadin and Croft, 2016).

    С точки зрения управления, инерция полезной нагрузки, отраженная к первичному двигателю, уменьшается на коэффициент, соответствующий квадрату передаточного числа. Таким же образом обычно небольшая инерция ротора первичного двигателя усиливается тем же фактором при отражении в сторону полезной нагрузки, который должен быть добавлен к инерции, возникающей в результате движения роботизированного устройства и груза по соображениям безопасности, а также ограничение рабочих скоростей.

    Хотя в большинстве актуаторов pHRI сегодня используются редукторы с высоким передаточным числом, некоторые известные робототехники Seok et al. (2014), Сенсингер и др. (2011) видят большой потенциал робототехники в использовании двигателей с высоким крутящим моментом (бегунков), требующих очень малых передаточных чисел. Новые производители робототехнических решений, такие как Genesis Robotics из Канады или Halodi Robotics AS из Норвегии, предлагают приводы для робототехники, основанные на этих принципах. По их мнению, увеличение инерции двигателя и уменьшение передаточного числа должно приводить к снижению инерции двигателя, отражаемой на рабочий орган, что обеспечивает более высокие рабочие скорости и / или полезную нагрузку без ущерба для целостности оператора.Низкие передаточные числа также имеют дополнительное преимущество в пропускной способности: они имеют меньшее трение и люфт, уменьшая нелинейность, вносимую коробкой передач. С другой стороны, умеренное передаточное число не может компенсировать нелинейные условия сцепления — обычно зубчатый крутящий момент (Siciliano et al., 2010).

    При более внимательном рассмотрении технических характеристик этих новых двигателей возникают некоторые вопросы с точки зрения достижимой эффективности, веса или компактности, а также последствий для оборудования, возникающих в результате чрезмерной тяги к высоким электрическим токам (HALODI Robotics, 2018; GENESIS Robotics, 2020).

    Подводя итог, нет полного согласия о том, как лучше всего подойти к безопасному срабатыванию для робототехники. Тем не менее, сильные естественные связи между безопасностью и управляемостью столь же очевидны, как и решающее значение передаточного числа трансмиссии и ее нелинейностей.

    Вес и компактность

    Облегченная конструкция имеет первостепенное значение для обеспечения совместимости безопасности и хорошей производительности в новых приложениях робототехники (Albu-Schäffer et al., 2008). Новейшие коллаборативные роботы (коботы), такие как облегченный робот KUKA, разработанный в сотрудничестве с Институтом робототехники и мехатроники Немецкого аэрокосмического центра (DLR), живут по этому принципу и, следовательно, сильно отличаются от тяжелых и громоздких традиционных промышленных роботов.Благодаря более низкой инерции, легкие коботы обеспечивают более высокую производительность — более высокие скорости — без ущерба для безопасности пользователя.

    Этот выгодный аспект облегченной конструкции имеет и другие преимущества. Для мобильных робототехнических систем меньший вес означает большую автономность. В носимых вспомогательных роботизированных устройствах, включая протезы и экзоскелеты, легкий вес также является ключевым аспектом для повышения комфорта (Toxiri et al., 2019).

    Высокая компактность — еще одна характеристика, присущая этим новым роботизированным устройствам: от коботов до вспомогательных устройств, компактность дает преимущества в маневренности и удобстве взаимодействия.

    В роботизированных приложениях, предполагающих тесное сотрудничество с людьми или предоставление мобильных услуг, позиции по своей сути весьма неопределенны. Легкие и компактные конструкции особенно выгодны (Loughlin et al., 2007) для этих применений с двумя последствиями: первичные двигатели и трансмиссии — обычно самые тяжелые элементы в роботизированном устройстве — должны быть легкими и компактными, но легкие конструкции имеют тенденцию требуйте более низких крутящих моментов.

    В отличие от веса коробки передач, определение подходящего критерия для оценки вклада коробки передач в компактность системы является более сложной задачей.Физический объем определенно играет роль, но наш опыт показывает, что фактическая форма коробки передач имеет тенденцию иметь большее влияние. Еще один аспект, о котором стоит упомянуть, — это наличие в некоторых конфигурациях редукторов свободного пространства для размещения материала или движущихся частей, таких как электродвигатели или выходные подшипники, также могут представлять особый интерес. Поэтому мы решили включить в нашу схему оценки приблизительную форму (диаметр × длина) выбранной коробки передач, в то время как наличие дополнительного места можно напрямую оценить с помощью предоставленных цифр для каждой из конфигураций.

    Эффективность и виртуальная мощность

    КПД

    В таких областях, как автомобильные или ветряные турбины, эффективность редукторов долгое время находилась в центре внимания. В робототехнике, с другой стороны, эффективность до недавнего времени не становилась ключевым параметром при выборе подходящей коробки передач (Arigoni et al., 2010; Dresscher et al., 2016).

    Более высокая эффективность — более низкие потери — позволяют снизить потребление энергии и прямо положительно влияют как на эксплуатационные расходы, так и на экологический след машины или устройства.Для мобильных и носимых роботизированных устройств повышение эффективности также помогает снизить вес системы — требуются батареи меньшего размера — и в конечном итоге приводит к большей автономности и лучшему удобству использования (Kashiri et al., 2018).

    В коробках передач есть еще одно преимущество в снижении потерь: большинство механических трансмиссий, используемых в робототехнике, имеют замкнутую форму и используют какой-либо контакт зубьев для передачи крутящего момента и движения между первичным двигателем и рабочим органом. Благодаря этому кинематическое соотношение между входной ω In и выходной скоростями ω Out заблокировано числом зубцов и определяет его передаточное отношение i K .В коробке передач без потерь передаточное отношение i τ между выходным и входным крутящими моментами τ точно соответствует обратному кинематическому передаточному отношению с противоположным знаком. Но в реальной коробке передач наличие потерь изменяет это равенство, и, поскольку кинематическое передаточное число заблокировано числом зубьев, абсолютное значение передаточного числа крутящего момента должно уменьшаться пропорционально потерям:

    ωInωOut = iK = — η iτ = -ητOutτIn; где η — КПД системы.

    Следовательно, высокие потери в коробке передач означают, что меньший крутящий момент доступен для рабочего органа и требуются более высокие передаточные числа для достижения такого же усиления крутящего момента.

    Редукторы подвержены нескольким видам потерь. Чтобы классифицировать их, мы принимаем критерии, предложенные Talbot и Kahraman (2014), и разделяем их на зависимые от нагрузки (механические) потери мощности, возникающие из-за скольжения и качения контактных поверхностей, как в контактах шестерен, так и в подшипниках, и нагрузки -независимые (спиновые) потери мощности — возникают из-за взаимодействия вращающихся компонентов с воздухом, маслом или их смесью.

    Виртуальная сила

    Термин виртуальная мощность, насколько известно авторам, был первоначально введен Ченом и Анхелесом (2006), но это явление, объясняющее аномально высокие потери, присутствующие в некоторых планетных топологиях, долгое время было известно под разными названиями, включая Blindleistung (Wolf, 1958; Mueller, 1998) и скрытая или бесполезная сила (Macmillan and Davies, 1965; Yu and Beachley, 1985; Pennestri and Freudenstein, 1993; Del Castillo, 2002).

    В соответствии с принципом действия коробка передач всегда включает в себя высокоскоростную сторону с низким крутящим моментом и сторону с высоким крутящим моментом и низкой скоростью. Следовательно, его внутренние зубчатые зацепления обычно подвержены либо высокому крутящему моменту и низкой скорости, либо условиям высокой скорости и низкого крутящего момента. Однако в некоторых коробках передач из-за их особой топологии некоторые зацепления шестерен могут иметь одновременно высокую скорость и высокий крутящий момент. Зубчатые зацепления могут легко достичь КПД выше 98%, но поскольку генерируемые потери приблизительно пропорциональны произведению относительной скорости двух зубчатых элементов и крутящего момента, передаваемого через зацепление (Niemann et al., 1975), на этих высоконагруженных сетках появляются неожиданно большие потери. Виртуальная мощность обеспечивает основу для оценки вклада этого явления, которое мы в дальнейшем будем называть Топологической эффективностью коробки передач.

    Некоторые из вышеупомянутых авторов предлагают методы для оценки топологической эффективности данной конфигурации и определения ее влияния на общую эффективность системы. В рамках Chen and Angeles (2006) виртуальная мощность определяется как мощность, измеренная в движущейся — неинерциальной — системе отсчета.Скрытая мощность , представленная Ю и Бичли (1985), соответствует виртуальной мощности, когда опорная система координат является несущим элементом коробки передач, в то время как виртуальная мощность — это соотношение между виртуальной мощностью и мощностью, генерируемой внешним крутящим моментом. применяется по ссылке. Используя эти элементы, мы определяем коэффициент скрытой мощности топологии коробки передач как отношение суммы скрытых мощностей во всех зацеплениях к мощности, подаваемой на коробку передач.Таким образом, большой коэффициент скрытой мощности соответствует низкой топологической эффективности и указывает на сильную тенденцию к возникновению больших потерь за счет зацепления.

    Чтобы облегчить понимание практического влияния на общую эффективность топологической эффективности, характеризующейся скрытым коэффициентом мощности, данной конфигурации редуктора, мы используем на этом этапе уравнения, предложенные Макмилланом и Дэвисом (1965) для расчета упрощенный пример.

    Полная коробка передач робототехники обычно включает в себя несколько зацепляющих контактов, каждый из которых имеет разные рабочие условия и параметры, что приводит к различной эффективности зацепления.Эти КПД очень высоки в оптимизированных зубчатых зацеплениях — часто выше 99% — и позволяют упростить наши расчеты, учитывая общую уникальную эффективность зацепления η м = 99% во всех зацепляющих контактах в нашем редукторе.

    Во-первых, эталонный редуктор, идеальный с точки зрения топологической эффективности, имел бы только одно зацепление и коэффициент скрытой мощности L = 1. Таким образом, потери мощности внутри этого эталонного редуктора можно легко рассчитать как функцию входной мощности. как:

    Таким образом, общая эффективность зацепления всего редуктора соответствует таковой для одиночного зацепляющего контакта:

    ηsys, идеально = PIN-PLossPIN = ηm = 99%;

    Неидеальный редуктор с таким же типовым η m во всех его зацеплениях и со скрытым коэффициентом мощности L, характеризующим его топологическую эффективность, указывает на то, что общие потери в редукторе можно приблизительно оценить следующим образом:

    Ploss, L≈ PIN * L * (1-ηm)

    И общая эффективность зацепления всей коробки передач теперь составляет:

    ηsys, L = PIN-PLoss, LPIN≈L * ηm + (1-L)

    Что для η m = 99% и для значения L = 50 дает:

    Этот результат следует частично релятивизировать, потому что накопленные потери в первых зацеплениях, задействованных вдоль различных внутренних потоков мощности в коробке передач, приводят к тому, что меньшая виртуальная мощность, как предсказано этими уравнениями, будет течь через последующие зацепления.Результатом этого является то, что КПД обычно будет падать немного медленнее с коэффициентом скрытой мощности, а более реалистичное значение для предыдущего расчета обычно будет между 55 и 60%.

    Чтобы частично компенсировать это большое влияние топологической эффективности на общую эффективность, конфигурации с большим скрытым коэффициентом мощности требуют чрезвычайно высокой эффективности зацепления: для достижения эффективности системы> 70% системе с L = 100 требуется средняя эффективность зацепления. выше 99.5%.

    Поэтому в нашем дальнейшем анализе мы сосредоточимся только на оценке вклада топологической эффективности в эффективность коробки передач. Это позволяет нам использовать упрощенный метод для расчета коэффициента скрытой мощности, который, в первую очередь, не учитывает влияние на потери, вызванные уменьшением крутящего момента. Соответствующие расчеты, использованные для определения коэффициента скрытой мощности различных конфигураций редукторов, проанализированных в этой работе, включены в Приложение I.

    Подводя итог, чтобы охарактеризовать важный эффект КПД коробки передач, мы оценим порядок величины трех параметров: (i) потери, зависящие от нагрузки, (ii) пусковой момент без нагрузки и (iii) коэффициент скрытой мощности.Хотя на него дополнительно влияет статическое трение, а не только кулоновское и вязкое трение, мы выбрали пусковой крутящий момент без нагрузки (относительно номинального крутящего момента) в качестве практического способа характеристики потерь, не зависящих от нагрузки. Наши обмены с производителями редукторов показывают, что это обычная практика, она не зависит от входной мощности и легко доступна в технических данных производителя.

    Производительность

    По сравнению со специальными машинами и машинами для автоматической сборки промышленные роботы не могут достичь тех же стандартов точности и скорости.Оба аспекта пришлось скомпрометировать, чтобы обеспечить большую степень гибкости и мобильности, а также рабочего пространства (Rosenbauer, 1995). С этой точки зрения HRI — это всего лишь еще один шаг в том же направлении: чтобы соответствовать дальнейшим потребностям гибкости и мобильности в неструктурированной среде, необходимы дополнительные компромиссы с точки зрения точности и скорости. Этот переход отражен на рисунке 1.

    Рисунок 1 . Графическое описание перехода основных задач задач от машин через промышленных роботов и коботов к людям-операторам.

    Точность и повторяемость

    Множество аспектов редуктора вносят вклад в общую точность полного роботизированного устройства. Эти аспекты долгое время находились в центре внимания традиционной робототехники и сегодня хорошо изучены, так как работы, подобные работам Майра (1989), Шемпфа и Йоргера (1993) или Розенбауэра (1995), содержат очень хорошие ссылки для понимания этих сложных влияний. Эти исследования выявили особенно важную роль, которую играет потеря хода и жесткость на кручение.

    Lost Motion — это дальнейшее развитие принципа люфта, который описывает полное вращательное смещение, создаваемое приложением ± 3% от номинального входного крутящего момента.

    Жесткость на кручение характеризует податливость всех элементов коробки передач при кручении во всем потоке сил под действием внешнего крутящего момента. Это достигается путем блокировки входа редуктора и постепенного увеличения крутящего момента, прилагаемого на выходе, при этом регистрируются изменения жесткости на кручение, приводящие к отклонениям от идеально линейного поведения.

    По своей природе точные — малые потери хода и линейная высокая жесткость на кручение — редукторы упрощают задачу управления и обеспечивают высокую точность, идеально подходят для управления положением, в то время как менее точные редукторы создают более серьезные проблемы для управления положением и могут использоваться для более гибкого срабатывания. . В технологиях редукторов, где скорость оказывает сильное влияние на потери или с особенно нелинейным трением, также необходимо учитывать вклад этих элементов в точность.

    Чтобы охарактеризовать возможности точности, наша конструкция включает потерю движения и жесткость на кручение, а также субъективную оценку изменения эффективности, вызванного изменениями скорости / крутящего момента.

    Скорость и полезная нагрузка

    Промышленные роботы могут обрабатывать большие полезные нагрузки за счет большой инерции. Для коботов, с другой стороны, соображения безопасности подразумевают, что они не должны обрабатывать такие большие полезные нагрузки, но благодаря более легкой конструкции они действительно могут достичь большего отношения полезной нагрузки к массе.

    Соображения безопасности также ограничивают степень, в которой это снижение массы может быть использовано для увеличения рабочих скоростей (Haddadin et al., 2009). Тем не менее, более низкий крутящий момент способствует использованию более легких и быстрых электродвигателей, что в принципе требует более высоких передаточных чисел для этих приложений.

    Критерий для характеристики вклада коробки передач в скорость и характеристики полезной нагрузки должен отражать эти аспекты и побуждать нас использовать в нашей структуре (i) максимальную входную скорость, (ii) максимальный воспроизводимый выходной крутящий момент — так называемый момент ускорения — и номинальный крутящий момент, (iii ) передаточное число и (iv) отношение крутящего момента к массе как для номинального, так и для момента ускорения.

    Резюме

    Определение характеристик роботизированных коробок передач — сложная задача: высокая универсальность этих устройств и их сложное взаимодействие с первичными двигателями и системами управления делают прямое сравнение их характеристик особенно сложным.

    Передаточное число продемонстрировало сильное влияние на производительность робототехнической системы. Это объясняет его предпочтительную роль в литературе, посвященной оптимизации срабатывания роботов, и растущий интерес робототехников к возможностям использования переменных передач (Kim et al., 2002; Карбон и др., 2004; Страмиджоли и др., 2008; Жирар и Асада, 2017). Хотя мы убеждены, что трансмиссии с регулируемой передачей очень многообещающие и, безусловно, будут способствовать формированию будущего ландшафта робототехники, мы ограничили наш анализ здесь компактными коробками передач с постоянным передаточным числом. На данный момент мы считаем, что нам лучше всего подойдет этот ограниченный объем, который может также способствовать выявлению потенциальных областей применения и подходящих технологий для трансмиссий с переменным передаточным числом.

    На основе этого анализа мы предлагаем схему оценки будущих роботизированных коробок передач на основе следующих параметров:

    • Передаточное число

    • Ускорение и номинальный выходной крутящий момент

    • Вес

    • Форма: диаметр × длина

    • Ускорение и номинальный крутящий момент к массе

    • КПД: пиковое значение и субъективная зависимость от скорости и крутящего момента

    • Топологическая эффективность: коэффициент скрытой мощности

    • Пусковой крутящий момент при прямом и обратном движении без нагрузки в% от номинального входного крутящего момента

    • Потери, не зависящие от нагрузки

    • Потерянное движение

    • Максимальная входная скорость

    • Жесткость на кручение

    Наша структура включает также эталонный вариант использования, характерный для множества задач pHRI согласно нашему собственному опыту: моменты ускорения более 100 Нм и передаточные числа более 1: 100, для которых необходимо оптимизировать вес, компактность и эффективность.

    Обзор технологий передачи данных, используемых в настоящее время в промышленных роботах

    Электродвигатели, оснащенные механическими трансмиссиями, обычно используются в качестве исполнительных механизмов в робототехнике (Rosenbauer, 1995; Scheinman et al., 2016), а также в промышленных роботах. Эти механические трансмиссии почти неизбежно основаны на какой-то зубчатой ​​передаче (Sensinger, 2013).

    Благодаря их большей способности снижать общий вес и поскольку электродвигатели имеют тенденцию иметь более высокий КПД на высоких рабочих скоростях, другой характеристикой промышленных роботизированных трансмиссий является использование относительно больших коэффициентов передачи (передаточных чисел), обычно выше 1:40. (Розенбауэр, 1995).

    Планетарные редукторы

    : чрезвычайно универсальная платформа

    Планетарные зубчатые передачи

    (PGT) — это компактные, универсальные устройства, широко используемые в силовых передачах. Благодаря характерной коаксиальной конфигурации и хорошей удельной мощности они особенно подходят для вращающихся первичных двигателей, таких как электродвигатели.

    PGT

    могут использовать две дифференцированные стратегии для достижения высоких коэффициентов усиления: (i) добавление нескольких ступеней обычных высокоэффективных PGT — здесь называемых редукторами и представленных на Рисунке 2 — или (ii) использование особенно компактных конфигураций PGT с возможностью получения высоких передаточные числа.

    Рисунок 2 . Внутреннее устройство редуктора Neugart с указанием его основных элементов, адаптировано из Neugart (2020) с разрешения © Neugart GmbH. Он также включает схему базовой топологии.

    Хотя использование нескольких ступеней редукторов позволяет наилучшим образом использовать эффективность зацепления высоких шестерен и приводит к высокоэффективным редукторам, это обычно приводит к тяжелым и громоздким решениям. Компактные конфигурации PGT с другой стороны могут достигать высоких передаточных чисел в очень компактных формах, но они страдают от удивительно высоких потерь, связанных с высокими виртуальными мощностями (Crispel et al., 2018).

    Особенно компактная конфигурация PGT для высоких передаточных чисел была впервые изобретена Вольфромом (1912) и использовалась в редукторах серии RE компании ZF Friedrichshafen AG (ZF), предназначенных для промышленных роботов (Looman, 1996). Эта конфигурация, показанная на Рисунке 3, сильно зависит от Virtual Power, и ZF представляет собой единственное известное коммерческое применение конфигураций PGT, отличное от обычных редукторов. Хотя производство серии RE было прекращено в 90-х годах, Wolfrom PGT в последнее время пользуются растущим интересом сообщества исследователей робототехники, как мы резюмировали в предыдущей статье авторов (López-García et al., 2019а).

    Рисунок 3 . Внутреннее устройство ZF’s RG Series Wolfrom PGT для роботизированных приложений адаптировано из Looman (1996) с разрешения © 1998 Springer-Verlag Berlin Heidelberg. Он также включает схему базовой топологии.

    Таблица 1 представляет оценку PGT. Несмотря на завышенные размеры для нашего теста, мы использовали ZF RG350 Wolfrom PGT, чтобы попытаться оценить потенциал конфигураций PGT с высоким коэффициентом, основываясь на имеющихся доказательствах его пригодности для достижения высоких коэффициентов (Арнаудов и Караиванов, 2005; Mulzer, 2010 ; Капелевич и AKGears LLC, 2013).Для редукторов мы выбрали — при поддержке производителей — подходящие решения из портфолио Wittenstein и Neugart. Стоит отметить важную роль, которую играет максимальное передаточное число на ступень в редукторе: в то время как Виттенштейн ближе к максимуму осуществимости, определяемому избеганием контакта между соседними планетами, Нейгарт выбирает в своей серии PLE (серия PLFE может достигать 1: 100 соотношений только в два этапа) более ограничительный подход и, следовательно, для достижения общего усиления 1: 100 требуется три этапа вместо двух для Виттенштейна.Это приводит к менее компактным решениям и более низкой эффективности для приложения 1: 100, но позволяет Neugart достичь более высокого прироста — до 1: 512 — без фундаментальных изменений веса, размера или эффективности.

    Таблица 1 . Схема оценки решений с планетарной зубчатой ​​передачей.

    Редукторы

    имеют вес около 4 кг, что нельзя напрямую сравнивать с увеличенными размерами RG350. RG350 имеет форму с большим диаметром и меньшей длиной, чем редукторы.Что касается отношения крутящего момента к весу, значения обоих решений кажутся относительно близкими.

    Редукторы

    имеют сильное преимущество в их хорошем КПД (выше 90%), который также менее чувствителен к изменениям рабочих условий, а пусковые моменты холостого хода очень низкие. Конфигурации с высоким коэффициентом полезного действия показывают, насколько сильно ограничивается топологическая эффективность, что приводит к снижению эффективности. Это, вероятно, объясняет, почему редукторы сегодня являются доминирующей технологией PGT в робототехнике.

    PGT показывают самые высокие входные скорости (до 8 500 об / мин), но их потери хода также самые большие (4–6 Arcmin) в обычных редукторах. В робототехнике PGT широко использовались в первых промышленных роботах, в то время как в последние десятилетия их использование сильно сократилось, в основном из-за их ограничений, связанных с уменьшением люфта. Несмотря на то, что существуют механизмы, ограничивающие изначально более значительную обратную реакцию PGT, на практике они основаны на введении определенной предварительной нагрузки, отрицательно влияющей на их эффективность (Schempf, 1990).

    Гармонические приводы: легкий редуктор деформационной волны без люфта

    Редуктор Strain Wave был изобретен Массером (1955) и нашел широкое применение в 70-х годах, первоначально в аэрокосмической отрасли. Его основное космическое применение было в качестве механического передающего элемента в аппарате лунохода Аполлона 15 в 1971 году (Schafer et al., 2005).

    Его название происходит от характерной деформации Flexspline , нежесткой тонкой цилиндрической чашки с зубьями, которая служит выходным отверстием.Flexspline входит в зацепление с фиксированным сплошным круглым кольцом с внутренними зубьями шестерни Circular Spline , в то время как он деформируется вращающейся эллиптической заглушкой — волновым генератором , как показано на Рисунке 4. Редукторы этого типа являются наиболее распространенными. обычно называют Harmonic Drive © (HD) из-за очень эффективной стратегии защиты IP.

    Рисунок 4 . Внутренняя конфигурация коробки передач Harmonic Drive CSG (слева), адаптированная из Harmonic Drive (2014) с разрешения © 2019 Harmonic Drive SE, и коробка передач E-Cyclo (справа), адаптированная из SUMITOMO (2020) с разрешения © Sumitomo Drive, 2020 Germany GmbH.Также включена схема их базовой топологии KHV, используемая для расчета его скрытого коэффициента мощности в Приложении I.

    Для нашего сравнительного анализа мы выбрали два подходящих редуктора Harmonic Drive, CSD-25-2A, предназначенный для интеграции в роботизированное соединение, чтобы обеспечить адекватные структурные граничные условия, и сверхлегкий редуктор CSG-25-LW, представляющий конструктивно достаточное решение. что может быть более прямо по сравнению с другими технологиями. Совсем недавно компания SUMITOMO представила новую коробку передач E-CYCLO, работающую также на принципе действия волны деформации.SUMITOMO предоставила нам доступ к своему самому последнему каталогу (SUMITOMO, 2020), что позволило нам включить его в наш тест (Таблица 2). Еще одна интересная волна деформации, очень похожая на гармонический привод, недавно была также представлена ​​GAM в своей серии коробок передач для робототехники, которая включает также планетарные зубчатые передачи и циклоидные приводы (GAM, 2020).

    Таблица 2 . Схема оценки решений волн деформации.

    Выбранная модель CSG имеет значительно больший крутящий момент, чем предполагалось в нашем тесте.Форма имеет больший диаметр, чем длина, а вес значительно ниже, чем у других технологий, и приводит к лучшему соотношению крутящего момента к массе из проанализированных технологий. Действительно, характерное зацепление с несколькими зубьями обеспечивает большее сопротивление крутящему моменту, чем в PGT, что делает эту технологию очень подходящей для соединений, расположенных ближе к рабочему органу, где они часто встречаются в современных промышленных роботах.

    Пиковый КПД ниже, чем у редукторов, и ближе к RG350, а КПД особенно чувствителен к условиям эксплуатации.Поезда Strain Wave демонстрируют большие потери, не зависящие от нагрузки, и пусковые моменты без нагрузки — особенно в условиях обратного движения, которые становятся особенно критическими для высоких скоростей и / или низких крутящих моментов (Harmonic Drive, 2014). Для роботизированных устройств HRI, подверженных частым изменениям скорости и полезной нагрузки в сочетании с обменом энергией между роботизированным устройством и пользователем, это означает, что средняя эффективность быстро падает ниже 40–50% (López-García et al., 2019b). Также стоит отметить их большой коэффициент скрытой мощности, указывающий на одновременное присутствие высоких крутящих моментов и скоростей в зацеплении зубьев, что также помогает объяснить относительно низкий КПД.

    Еще раз, благодаря зацеплению с несколькими зубьями, можно достичь потерянных движений ниже 1 угловой минуты, что дает этому редуктору сильное преимущество, которое помогает гармоническим приводам находить широкое применение в промышленных роботах. Они смогли вытеснить PGT из многих приложений, особенно после значительного улучшения характеристик, вызванного новой геометрией зубьев, представленной этой компанией в 90-х годах, что также улучшило линейность их жесткости (Slatter, 2000).

    Максимальная входная скорость раньше была сильным ограничением для использования редукторов HD (Schempf, 1990), но новые достижения и улучшения конструкции позволяют им теперь достигать 7500 об / мин.

    Циклоидные приводы: для высокой прочности и жесткости на кручение

    С момента своего изобретения Лоренцем Брареном в 1927 году (Li, 2014) циклоидные приводы нашли применение в основном в лодках, подъемных кранах и некотором крупном оборудовании, таком как прокатные стальные полосы или станки с ЧПУ. В циклоидных приводах эксцентричное входное движение создает шаткое циклоидальное движение одиночного большого планетарного колеса, которое затем преобразуется обратно во вращение выходного вала и приводит к высокой редукционной способности (Gorla et al., 2008), см. Рисунок 5.

    Рисунок 5 . Внутренняя конфигурация циклоидных приводов SUMITOMO Fine Cyclo F2C-A15 и Fine Cyclo F2C-T155, идентифицирующая их основные элементы, адаптирована из SUMITOMO (2017) с разрешения © Sumitomo Cyclo Drive Germany GmbH, 2017. Он также включает схему лежащих в основе топологий.

    Таблица 3 включает лидера рынка (NABTESCO RV) в этом сегменте и основных претендентов (SPINEA и SUMITOMO). RV от NABTESCO и серия Fine-Cyclo T от SUMITOMO включают в себя обычную ступень PGT с предварительным зацеплением.Полезная нагрузка этих устройств больше, чем требуется для нашего теста, и приводит к большому весу. Это уже дает ценную информацию: более компактные решения недоступны на рынке и, согласно информации, предоставленной некоторыми производителями, менее интересны, поскольку для них потребуется высочайшая точность производства и, в конечном итоге, приведет к высоким затратам.

    Таблица 3 . Схема оценки решений для циклоидных приводов.

    Формы аналогичны коробкам передач с волновой деформацией, а по весу больше и ближе к весам PGT по вышеупомянутым причинам.Отношение крутящего момента к массе больше, чем у PGT, но немного ниже, чем у редукторов с волновой деформацией. Основное преимущество циклоидных приводов заключается именно в их способности выдерживать большие нагрузки и особенно ударные нагрузки, а также в минимальных затратах на техническое обслуживание.

    Пиковый КПД выше, чем у редукторов с волновой деформацией, и ближе к КПД PGT, но КПД сильно зависит от условий эксплуатации (Mihailidis et al., 2014), и пусковые моменты холостого хода, и коэффициент скрытой мощности высоки. аналогично редукторам с волновой деформацией.

    Хотя они, как правило, имеют некоторый люфт, который, если его конструкция часто компенсируется, достигает уровней, сопоставимых с уровнями редукторов с волновой деформацией, вероятно, за счет немного более высокого трения. Их жесткость на кручение — самая большая из проанализированных технологий редукторов.

    Циклоидные приводы

    имеют неотъемлемое ограничение на работу с высокими входными скоростями, вызванное наличием большого и относительно тяжелого планетарного (кулачкового) колеса, что приводит к большой инерции и дисбалансу.Это мотивирует использование, как правило, двух планетарных колес, расположенных последовательно и смещенных на 180 градусов друг к другу, для устранения дисбаланса, уменьшения вибраций и увеличения входной скорости. Это объясняет, как благодаря объединению циклоидных приводов со ступенями предварительного зацепления, состоящими из обычных ступеней PGT, циклоидные приводы получили широкое распространение в робототехнике. Такое расположение повышает эффективность, снижает чувствительность к высоким входным скоростям и обеспечивает легкую адаптацию их передаточных чисел.В 90-х годах гармонические приводы доминировали на рынке роботизированных коробок передач, но усовершенствования циклоидной технологии позволили циклоидным приводам начать покорять бездорожье, сначала в Японии, а затем в других местах (Rosenbauer, 1995). В настоящее время производители, такие как NABTESCO, SUMITOMO или NIDEC, предлагают циклоидные гибриды с интегрированным передаточным механизмом PGT, покрывающие более 60% рынка роботизированных коробок передач, и поэтому стали новой доминирующей технологией, особенно для проксимальных суставов, подверженных более высоким нагрузкам и меньшим ограничениям по весу (WinterGreen Исследования, 2018).

    Наконец, стоит упомянуть наличие относительно большой пульсации крутящего момента, которая вносит нелинейности и усложняет их регулирование. Эта пульсация крутящего момента связана с необходимостью использования циклоидных профилей зубьев, чтобы избежать столкновения зубьев между большим планетарным колесом (-ами) и зубчатым венцом, что делает эти устройства чрезвычайно чувствительными к изменениям межцентрового расстояния, вызываемым даже небольшими производственными ошибками. Существует несколько попыток улучшить эту ситуацию, используя эвольвентные зубья, менее чувствительные к колебаниям межцентрового расстояния, с уменьшенными углами давления и / или коэффициентами контакта для минимизации радиальных сил и повышения эффективности (Morozumi, 1970), а также с использованием других форм нестандартных зубьев. -инволютные зубы (Коряков-Савойский и др., 1996; Хлебаня и Куловец, 2015).

    Обзор новейших технологий передачи для робототехники

    Усилитель крутящего момента REFLEX

    Genesis Robotics привлекла большое внимание в сообществе робототехники с появлением их двигателя с прямым приводом, LiveDrive © . Согласно Genesis, LiveDrive в двух доступных топологиях — радиальном и осевом потоках — обеспечивает сравнительные характеристики в соотношении крутящего момента к массе. Двигатель с осевым потоком может достигать 15 Нм / кг, в то время как радиальный поток ограничивается максимум 10 Нм / кг.

    Чтобы расширить спектр применения, Genesis Robotics представила совместимую коробку передач, получившую название Reflex , которая показана на рисунке 6. Эта литая под давлением сверхлегкая пластиковая коробка передач предназначена для легких роботов, и хотя изначально она была разработана для совместной работы с LiveDrive. и поэтому он нацелен на передаточные числа ниже 1:30, он также способен обеспечивать передаточные числа до 1: 400 (GENESIS, 2018).

    Рисунок 6 . Внутренняя конфигурация и основные элементы редуктора Reflex адаптированы из GENESIS Robotics (2020) с разрешения © 2019 Genesis Robotics.Он также включает схему базовой топологии.

    В основе топологии лежит топология Wolfrom PGT с несколькими меньшими планетами (Klassen, 2019), в которой реактивное (неподвижное) кольцевое зубчатое колесо разделено на две части для балансировки в соответствии с конструкцией, первоначально предложенной Россманом (1934) и используемой в качестве хорошо в передаче Hi-Red Tomcyk (2000).

    В редукторе Reflex выходное кольцо также разделено для облегчения сборки с косозубыми зубьями. Еще одним интересным аспектом этой конструкции является заклеенная лентой форма планет, которая, как подозревают авторы, связана с возможностью предварительной нагрузки системы для достижения нулевого люфта, который, как утверждает Genesis, возможен с этой коробкой передач.По заявлению компании, гибкость пластиковых планетарных колес также дает преимущество в уменьшении люфта.

    К сожалению, пока нет независимых тестов для подтверждения заданных характеристик, и никаких официальных данных, особенно по эффективности, на данный момент от Genesis не имеется, поэтому в Таблицу 4 включено только значение Latent Power Ratio, вытекающее из его топологии.

    Таблица 4 . Схема оценки новых технологий редукторов.

    Таким образом, хотя лежащая в основе топология Wolfrom указывает на то, что эффективность, безусловно, будет сложной задачей, эта инновационная коробка передач демонстрирует большой потенциал для переосмысления существующих технологий и их адаптации к будущим потребностям робототехники. Genesis Robotics недавно вступила в интересное партнерство с известными промышленными компаниями, такими как Koch Industries Inc. и Demaurex AG.

    Проезд Архимеда

    IMSystems из Нидерландов является дочерней компанией Делфтского технологического университета, созданной в 2016 году для использования изобретения Archimedes Drive (Schorsch, 2014).

    Привод Архимеда снова повторяет топологию редуктора Wolfrom (также с разрезным реактивным кольцом в некоторых его конструкциях), но включает в себя революционное новшество в использовании роликов вместо шестерен для замены зубчатых контактов контактами качения, см. Рисунок 7. Контролируемая деформация планетарных роликов позволяет передавать крутящий момент между планетами аналогично колесам транспортного средства.

    Рисунок 7 . Внутренняя конфигурация привода Архимеда с деталями, показывающими его планеты Flexroller, адаптирована из IMSystems (2019) с разрешения © 2019 Innovative Mechatronic Systems B.V., со схемой лежащей в основе топологии.

    Характеристики, представленные в таблице 4, взятой из брошюры компании (IMSystems, 2019) и доступной по запросу, показывают, что использование топологии Wolfrom дает этому устройству возможность достигать очень высоких передаточных чисел в компактной форме, но это также приводит к низкой топологической эффективности. Согласно IMSystems, замена контакта зубчатого колеса на контакт качения способствует минимизации контактных потерь, которые, в частности, при передаче крутящего момента между планетарной передачей и кольцевыми роликами должны компенсировать высокое латентное соотношение мощности и приводить к максимальному КПД. около 80% (IMSystems, 2019).Никаких данных о пусковых моментах или потерях, не зависящих от нагрузки, не приводится.

    Чтобы обеспечить передачу высокого крутящего момента без проскальзывания, необходимо строго контролировать деформацию роликов планетарного механизма, а также производственные допуски коробки передач. Это представляет собой одну из основных технологических проблем, и это ядро ​​инноваций, вносимых этой технологией (Schorsch, 2014).

    NuGear

    STAM s.r.l. — частная инженерная компания из Генуи, которая помогла разработать роботизированный сустав для гуманоидного робота I-Cub.Их NuGear — это нутационная коробка передач, которая изначально была задумана (Барбагелата и Корсини, 2000) для космических приложений, но могла бы развить свой потенциал для робототехники также за счет исследования альтернативных производственных средств.

    Пока нет общедоступной информации о рабочих характеристиках этой коробки передач, что означает, что мы можем предоставить здесь только предварительный анализ ее топологии и результирующих характеристик, которых можно ожидать на основе ограниченной информации, доступной в основном из проекта Caxman EU ( CAxMan, 2020), для которого NuGear был примером использования, и из доступных патентов (Barbagelata et al., 2016).

    На рисунке 8 внутренняя структура NuGear представлена ​​с использованием эквивалентной конфигурации PGT — для облегчения понимания абстрагируется аспект нутации. Таким образом становится ясно, что NuGear напоминает два PGT Wolfrom, для которых несущая используется в качестве входа, соединенных последовательно, и где каждый из них соответствует одному из двух этапов, определенных в Barbagelata et al. (2016). Это еще раз указывает на то, что в этой коробке передач будет присутствовать относительно высокий коэффициент скрытой мощности.Для передаточного числа 1: 100 и при условии сбалансированного усиления 1:10 на каждой из двух ступеней, как предложено в Barbagelata et al. (2016), мы получаем, используя уравнения, выведенные в Приложении I, коэффициент скрытой мощности 32, что указывает на топологическую эффективность, аналогичную таковой у Wolfrom PGT.

    Рисунок 8 . Внутренняя конфигурация двухступенчатой ​​коробки передач NuGear для версии с оппозитными контактами планет адаптирована из CAxMan (2020) с разрешения © Stam S.r.l. Он также включает схему базовой топологии.

    Еще предстоит подтвердить, в какой степени использование методов аддитивного производства может помочь STAM s.r.l. снизить большие затраты на производство конических зубчатых колес, а также определить, сможет ли операция нутации достичь достаточной надежности и более компактной формы, которые могут открыть дверь для его использования в области робототехники (CAxMan, 2020).

    Двусторонний привод

    Компания FUJILAB в Иокогаме предложила в Fujimoto (2015) коробку передач с высокой степенью управляемости для робототехники, которая особенно подходит для работы без датчика крутящего момента (Kanai and Fujimoto, 2018).

    Как видно на Рисунке 9, конфигурация этого устройства снова аналогична PGT Wolfrom. При такой топологии Fujimoto et al. смогли достичь при передаточном числе 1: 102 КПД при движении вперед 89,9% и КПД при движении задним ходом 89,2%. Пусковой крутящий момент без нагрузки в обратном направлении составил 0,016 Нм в коробке передач с внешним диаметром ~ Φ50 мм (Kanai and Fujimoto, 2018). Стратегия достижения такой высокой эффективности с топологией Wolfrom заключается в оптимизации коэффициентов сдвига профиля (Fujimoto and Kobuse, 2017).

    Рисунок 9 . Внутренняя конфигурация двустороннего привода, высокоэффективной коробки передач, способной обеспечивать передаточное число 1: 102 с использованием топологии Wolfrom, любезно предоставлено © Yasutaka Fujimoto.

    Эти многообещающие результаты — см. Таблицу 4 — показывают, что выравнивание соотношений подвода и углубления посредством оптимизации коэффициентов смещения профиля может привести к чрезвычайно высокой эффективности зацепления. Насколько известно авторам, эта стратегия была первоначально предложена Хори и Хаяши (1994) и особенно интересна в топологии Wolfrom, где она в конечном итоге может обеспечить эффективность выше 90% в сочетании с высокими передаточными числами и компактными топологиями.

    Привод подшипника шестерни

    Вслед за новаторской работой в этой области Джона М. Враниша из НАСА, результатом которой стало изобретение планетарной шестерни без водила во Вранише (1995) и подшипников с частичными зубьями (Враниш, 2006), NASA Goddard Space Центр управления полетами представил свою концепцию нового зубчатого подшипника в Вайнберге и др. (2008).

    Северо-Восточный университет в Бостоне продолжил разработку этого нового привода для применения в роботизированных соединениях.Как видно на Рисунке 10, он включает в себя коробку передач Wolfrom, адаптированную для включения конструкции Vranish без опоры и зубчатых подшипников. Подшипники шестерен представляют собой контакты качения, которые предусмотрены для каждой пары зубчатых колес в соответствии с их делительным диаметром и уменьшают нагрузку на подшипники коробки передач (Brassitos et al., 2013). Эта топология обеспечивает удобную интеграцию электромотора, который, следовательно, встроен в полую часть большого солнечного зубчатого колеса в конфигурации, специально предназначенной для космических приложений (Brassitos and Jalili, 2017).

    Рисунок 10 . Внутренняя конфигурация зубчатого подшипника привода, включая встроенный бесщеточный двигатель, адаптирована из Brassitos and Jalili (2017) с разрешения © 2017 Американское общество инженеров-механиков ASME. Справа также показана лежащая в основе топология Wolfrom с расщепленным реакционным кольцом.

    В Brassitos and Jalili (2018) металлический прототип привода с зубчатым подшипником с передаточным числом 1:40 характеризуется жесткостью, трением и кинематической погрешностью.Измерения полностью соответствуют показателям FUJILAB и подтверждают низкий пусковой крутящий момент без нагрузки в этой конфигурации (0,0165 Нм для внешнего диаметра коробки передач ~ 100 мм). После экспериментального измерения жесткости, трения и кинематической погрешности их привода (Brassitos and Jalili, 2018) интегрировали эти значения в динамическую модель, которая затем была смоделирована и сравнена с откликом скорости разомкнутого контура системы при свободном синусоидальном движении, показав хорошие результаты. корреляция и предлагает очень удобную высокую линейность передачи.

    Предварительные измерения показали хороший комбинированный КПД двигателя и коробки передач Wolfrom с передаточным числом 1: 264 (Brassitos et al., 2013), что не очень хорошо коррелирует с рассчитанным скрытым коэффициентом мощности 196. КПД не был определен. снова в центре внимания недавних статей авторов, и мы, к сожалению, не смогли на данный момент подтвердить окончательные уровни эффективности, которых могут достичь новые прототипы.

    В любом случае привод с зубчатым подшипником дает очень интересные возможности для использования потенциала топологии Wolfrom в робототехнике.Возможность удаления несущего элемента и встраивания электродвигателя в коробку передач в общем корпусе позволяет получить впечатляюще компактные конструкции. Возможность использования продольных роликов зубчатых подшипников для уменьшения радиальной нагрузки на подшипники также является многообещающим вариантом для повышения компактности и повышения эффективности (Brassitos et al., 2019).

    The Galaxie Drive

    Schreiber and Schmidt (2015) защищает основные инновации, включенные в Galaxie Drive, коробку передач, которую WITTENSTEIN в настоящее время выводит на рынок прецизионных коробок передач через свой стартап Wittenstein Galaxie GmbH, созданный в апреле 2020 года.

    Хотя таблица данных и подробная информация еще не доступны, также раскрыты принцип работы и ожидаемая прибыль. Galaxie Drive представляет новый кинематический подход, основанный на линейном наведении одиночного зуба в зубчатом держателе Teeth Carrier , но, по мнению этих авторов, его топология напоминает топологию деформационно-волнового механизма, см. Рис. 11. Гибкая линия заменена зубцами. Держатель, включающий два ряда отдельных зубцов, выполнен с возможностью радиального перемещения и зацепления с круговым шлицем в качестве вращающегося многоугольного вала выполняет роль генератора волн с многоугольным периметром (Schreiber and Röthlingshöfer, 2017).Следовательно, несколько отдельных зубьев входят в зацепление одновременно с круговым шлицем — так же, как в Harmonic Drive. Это, вместе с двухточечным контактом с высокой устойчивостью к крутящему моменту между каждым отдельным зубом и держателем зубов, обеспечивает этому устройству характерный нулевой люфт, высокую жесткость на кручение и эталонное соотношение крутящего момента к весу, по словам производителя.

    Рисунок 11 . Деталь зацепления зубьев коробки передач Galaxy (R) DF адаптирована из Schreiber (2015) с разрешения © 2020 Wittenstein Galaxie GmbH.Он включает схему базовой топологии KHV.

    В ходе прямого обмена мнениями представители Виттенштейна подтвердили, что очевидная проблема трения между отдельными зубьями и их направляющим круговым кольцом решена, и Galaxie может достичь максимальной эффективности выше 90%. Из-за лежащей в основе конфигурации KHV ожидаются большие коэффициенты скрытой мощности, но пока невозможно получить дальнейшее представление об эффективности зацепления, которая будет результатом радиального движения зубьев, которое включает новую логарифмическую спиральную боковую поверхность зуба (Мишель, 2015).

    Первоначально привод Galaxie Drive предназначался для высокоточного оборудования, где высокая жесткость и сопротивление крутящему моменту могут помочь увеличить скорость и повысить производительность. В будущем мы, безусловно, сможем оценить потенциал этой инновационной технологии также для робототехнических приложений.

    Обсуждение

    Новое поколение робототехнических устройств меняет приоритеты в выборе подходящих коробок передач. Вместо высочайшей точности на высоких скоростях эти устройства предъявляют более строгие требования к легким и очень эффективным устройствам с механическим усилением.

    Сверхлегкие приводы деформационных волн (HD, E-cyclo), безусловно, находятся в очень хорошем положении для удовлетворения этих потребностей, что подтверждается их нынешним доминированием в области коботов. При рассмотрении привода волны деформации для роботизированной задачи pHRI работа при низких крутящих моментах и ​​скоростях должна быть сведена к минимуму, если эффективность должна быть максимальной. Хотя их оптимизированная геометрия зубьев способствует более линейной жесткости на кручение, трение остается очень нелинейным и зависит от направления, вызывая также определенные ограничения использования.Храповик как следствие ударной нагрузки — еще одно ограничение, которое следует учитывать для этого типа редуктора, которое E-Cyclo не должен иметь (SUMITOMO, 2020).

    Циклоидные приводы

    прошли долгий путь, чтобы в конечном итоге стать доминирующей технологией в промышленных роботах. Благодаря технологическим достижениям, направленным на уменьшение люфта и ограничений скорости ввода, теперь они могут обеспечивать хорошую точность с приемлемой эффективностью, несмотря на высокие скрытые коэффициенты мощности, возникающие из-за лежащей в основе топологии KHV, эквивалентной топологии приводов с волновой деформацией.Использование ступени перед зацеплением также вносит важный вклад в достижение этой цели за счет повышения базовой топологической эффективности. Сверхлегкие конструкции, подобные конструкции SPINEA, демонстрируют интересный потенциал, но в конечном итоге потребуются более прорывные подходы, такие как пластиковые материалы, чтобы удовлетворить потребности в более легких коробках передач и более высоких передаточных числах, необходимых для HRI. Пока это не станет возможным, циклоидные приводы можно рассматривать только для больших полезных нагрузок, когда их больший вес и результирующая инерция не критичны для работы.Когда исключительная точность не требуется, можно избежать мер компенсации люфта в пользу повышения эффективности и более низких пусковых моментов. В любом случае следует позаботиться о том, чтобы адекватно управлять пульсацией крутящего момента, и, вероятно, необходимо будет остаться на этапе перед включением, чтобы обеспечить высокие скорости входного двигателя.

    Невозможность планетарных редукторов уменьшить люфт при сохранении хорошей производительности и ограничения жесткости на кручение ограничили их использование в промышленной робототехнике. Тем не менее, PGT чрезвычайно универсальны, что демонстрирует их широкое использование во множестве современных промышленных устройств.И они изначально эффективны, надежны и относительно просты — дешевы — в производстве. Это может объяснить недавний интерес робототехников к PGT и почему пять из шести изученных здесь принципиально инновационных редукторов основаны на конфигурации PGT с высоким передаточным числом: топологии Wolfrom. Лучшая топологическая эффективность в сочетании с улучшением эффективности зацепления за счет модификации профиля или даже еще одного шага вперед по замене зубьев контактами качения являются многообещающими характеристиками. В сочетании с возможностями, открываемыми их полой топологией, эти элементы потенциально могут привести к возвращению PGT в робототехнику.

    Наше исследование показывает, что большая универсальность технологий редукторов, используемых в робототехнике, представляет собой серьезную проблему для прямого сравнения их характеристик. Как показывают примеры люфта и максимальной входной скорости, адекватные модификации конструкции могут надлежащим образом компенсировать большинство исходных слабых мест определенной технологии за счет компромиссов в других аспектах, обычно включая эффективность, размер, вес и стоимость. Точно так же большие скрытые коэффициенты мощности указывают на существенный топологический недостаток с точки зрения эффективности, но он также может быть — по крайней мере частично — компенсирован соответствующими модификациями.Таким образом, обучающий эффект заключается в том, что выбор подходящей технологии редуктора для определенного применения pHRI является чрезвычайно сложным процессом, требующим глубокого понимания фундаментальных недостатков, возможностей улучшения и производных компромиссов каждой технологии. Наша первоначальная цель исследования — внести свой вклад в простую таблицу выбора, способную помочь неопытным робототехникам в выборе подходящих технологий редукторов для своих роботизированных устройств, поэтому не могла быть достигнута.Вместо этого в этой статье собраны и объясняются основные параметры выбора и связанные с ними проблемы в каждой из доступных технологий, с целью помочь инженерам-роботам pHRI развить необходимые навыки, необходимые для осознанного выбора подходящей, индивидуально оптимизированной коробки передач.

    Два важных аспекта роботизированных редукторов для pHRI, к сожалению, не могут быть адекватно оценены в нашем исследовании на данном этапе: шум и стоимость. По мере того как робототехнические устройства становятся все ближе к людям, робототехники уделяют все больше внимания шуму.Редукторы, безусловно, представляют собой важный источник шума (переносимого воздухом и конструкциями), но, к сожалению, на данном этапе рекомендуется исключить шум из нашего анализа по двум основным ограничениям. Во-первых, большинство производителей редукторов еще не предоставляют количественных оценок шумовых характеристик, и когда они это делают, они, как правило, следуют другим методам испытаний, которые также не особенно подходят для рабочих условий в pHRI. Во-вторых, современные технологии коробок передач все еще должны пройти ожидаемый процесс оптимизации шума.

    Стоимость также является важным параметром, делающим технологии pHRI более доступными, и поэтому становится важным при выборе подходящих редукторов для будущих робототехнических технологий. К сожалению, и здесь научному сообществу доступно недостаточное количество исходной информации для систематической справедливой оценки крупномасштабного экономического потенциала определенной технологии редукторов. Прежде чем можно будет определить подходящую основу для оценки этого потенциала, требуется большой объем исследовательской работы, которая явно выходит за рамки нашего исследования.

    Эти два ограничения очерчивают основные рекомендации авторов для интересных направлений будущих исследований. Определение стандартных условий испытаний на воздушный и конструктивный шум в коробках передач, особенно адаптированных к типичным условиям эксплуатации и потребности в pHRI, могло бы позволить прямое сравнение различных технологий и способствовать их оптимизации шума. Кроме того, составление доступных моделей затрат для производственных процессов, связанных с изготовлением коробок передач, и их адаптация к специфике конкретных технологий, используемых в робототехнике, позволит создать основу для оценки потенциала (и препятствий) крупномасштабных затрат разные технологии.

    Взносы авторов

    Все авторы принимали участие в предварительной работе, связанной с этой темой исследования, и внесли свой вклад в концептуализацию структуры, представленной в рукописи. PG работала над созданием подходящей системы оценки для выполнения анализа коробки передач и взяла на себя инициативу в написании рукописи и преобразовании ее в ее текущую форму. PG и ES в равной степени внесли свой вклад в определение потенциально подходящих технологий и их анализ с помощью фреймворка.Все корректуры авторов прочитали и внесли свой вклад в окончательную версию статьи.

    Финансирование

    SC, ES (доктор философии) и TV (доктор наук) являются научными сотрудниками Исследовательского фонда Фландрии — Fonds voor Wetenschappelijk Onderzoek (FWO). Эта работа частично финансируется Программой исследований и инноваций Европейского Союза Horizon 2020 в рамках Соглашения о гранте № 687662 — проект SPEXOR.

    Конфликт интересов

    Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

    Благодарности

    Авторы хотели бы поблагодарить профессора Ясутака Фудзимото из Йокогамского национального университета, а также компании Neugart GmbH, Harmonic Drive SE, Sumitomo Drive Germany GmbH, Genesis Robotics, Innovative Mechatronic Systems B.V., Stam s.r.l. и Wittenstein Galaxy GmbH за любезную поддержку и полученные объяснения, а также за разрешение использовать прилагаемые изображения их устройств.

    Дополнительные материалы

    Дополнительные материалы к этой статье можно найти в Интернете по адресу: https: // www.frontiersin.org/articles/10.3389/frobt.2020.00103/full#supplementary-material

    Список литературы

    Альбу-Шеффер, А., Эйбергер, О., Гребенштейн, М., Хаддадин, С., Отт, К., Вимбок, Т. и др. (2008). Мягкая робототехника. Робот IEEE. Автомат. Mag. 15, 20–30. DOI: 10.1109 / MRA.2008.927979

    CrossRef Полный текст | Google Scholar

    Arigoni, R., Cognigni, E., Musolesi, M., Gorla, C., and Concli, F. (2010). «Планетарные редукторы: эффективность, люфт, жесткость» в Международная конференция VDI по зубчатым колесам (Мюнхен).

    Google Scholar

    Арнаудов, К., Караиванов, Д. (2005). «Планетарные зубчатые передачи с высшим составом» в Международная конференция VDI по зубчатым колесам , Vol. 1904 (Мюнхен: VDI-Bericht), 327–344.

    Барбагелата А. и Корсини Р. (2000). Riduttore Ingranaggi Conici Basculanti . Патент Италии № IT SV20000049A1. Рим: Ufficio Italiano Brevetti e Marchi.

    Барбагелата А., Эллеро С. и Ландо Р. (2016). Планетарный редуктор .Европейский патент № EP2975296A2. Мюнхен: Европейское патентное ведомство.

    Брасситос, Э. и Джалили, Н. (2017). Проектирование и разработка компактного высокомоментного роботизированного привода для космических механизмов. J. Mech. Робот. 9, 061002-1–061002-11. DOI: 10.1115 / 1.4037567

    CrossRef Полный текст | Google Scholar

    Брасситос, Э., и Джалили, Н. (2018). «Определение характеристик жесткости, трения и кинематической погрешности в трансмиссиях с зубчатыми подшипниками», в ASME 2018 International Design Engineering Technical Conference и Computers and Information in Engineering Conference (Квебек: цифровая коллекция Американского общества инженеров-механиков).DOI: 10.1115 / DETC2018-85647

    CrossRef Полный текст | Google Scholar

    Брасситос, Э., Мавроидис, К., и Вайнберг, Б. (2013). «Зубчатый подшипниковый привод: новый компактный привод для роботизированных соединений», в ASME 2013 Международная техническая конференция по проектированию и Компьютеры и информация в инженерной конференции (Портленд, Орегон: цифровая коллекция Американского общества инженеров-механиков). DOI: 10.1115 / DETC2013-13461

    CrossRef Полный текст | Google Scholar

    Брасситос, Э., Вайнберг, Б., Цинчао, К., и Мавроидис, К. (2019). Контактная система изогнутого подшипника . Патент США № US10174810B2. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Каланка, А., Мурадор, Р., Фиорини, П. (2015). Обзор алгоритмов совместимого управления жесткими и фиксированными роботами. IEEE / ASME Trans. Мех. 21, 613–624. DOI: 10.1109 / TMECH.2015.2465849

    CrossRef Полный текст | Google Scholar

    Карбоне, Г., Mangialardi, L., и Mantriota, G. (2004). Сравнение характеристик полнотороидальных и полутороидальных тяговых приводов. мех. Мах. Теория 39, 921–942. DOI: 10.1016 / j.mechmachtheory.2004.04.003

    CrossRef Полный текст | Google Scholar

    Четинкунт, С. (1991). Проблемы оптимального проектирования в высокоскоростных высокоточных сервосистемах движения. Мехатроника 1, 187–201. DOI: 10.1016 / 0957-4158 (91)

    -A

    CrossRef Полный текст | Google Scholar

    Чен, К.и Анхелес Дж. (2006). Потери виртуальной мощности и механические потери мощности в зубчатых зацеплениях планетарных зубчатых передач. ASME J. Mech. Des. 129, 107–113. DOI: 10.1115 / 1.2359473

    CrossRef Полный текст | Google Scholar

    Чен, Д. З., и Цай, Л. В. (1993). Кинематический и динамический синтез редукторных робототехнических механизмов. J. Mech. Des. 115, 241–246. DOI: 10.1115 / 1.2

    3

    CrossRef Полный текст | Google Scholar

    Crispel, S., López-García, P., Verstraten, T., Convens, B., Saerens, E., Vanderborght, B., and Lefeber, D. (2018). «Представляем составные планетарные передачи (C-PGT): компактный способ достижения высоких передаточных чисел для носимых роботов», на Международном симпозиуме по носимой робототехнике (Пиза), 485–489. DOI: 10.1007 / 978-3-030-01887-0_94

    CrossRef Полный текст | Google Scholar

    Де Сантис А., Сицилиано Б., Де Лука А. и Бикки А. (2008). Атлас физического взаимодействия человека и робота. мех.Мах. Теория 43, 253–270. DOI: 10.1016 / j.mechmachtheory.2007.03.003

    CrossRef Полный текст | Google Scholar

    Дель Кастильо, Дж. М. (2002). Аналитическое выражение КПД планетарных зубчатых передач. мех. Мах. Теория 37, 197–214. DOI: 10.1016 / S0094-114X (01) 00077-5

    CrossRef Полный текст | Google Scholar

    Дрессчер, Д., де Фрис, Т. Дж., И Страмиджоли, С. (2016). «Выбор двигателя-редуктора для повышения энергоэффективности», в Международная конференция IEEE 2016 по усовершенствованной интеллектуальной мехатронике (AIM) (Банф, AB: IEEE), 669–675.DOI: 10.1109 / AIM.2016.7576845

    CrossRef Полный текст | Google Scholar

    Фудзимото Ю. (2015). Эпициклический зубчатый привод и метод его конструирования . Патент Японии № JP2015164100. Токио: Патентное ведомство Японии.

    Fujimoto, Y., and Kobuse, D. (2017). «Роботизированные приводы с высокой степенью управляемости», на международном семинаре IEEJ по обнаружению, срабатыванию, управлению движением и оптимизации (SAMCON) (Нагаока), IS2–1.

    GAM (2020). Коробка передач деформационной волны GSL .Каталог.

    ГЕНЕЗИС (2018). Reflex Усилитель крутящего момента — движущая сила будущего . Tech Update Общайтесь.

    Гиберти Х., Чинквемани С. и Леньяни Г. (2010). Влияние механических характеристик трансмиссии на выбор мотор-редуктора. Мехатроника 20, 604–610. DOI: 10.1016 / j.mechatronics.2010.06.006

    CrossRef Полный текст | Google Scholar

    Жирар, А., Асада, Х. Х. (2017). Использование естественной динамики нагрузки с приводами с регулируемым передаточным числом. Робот IEEE. Автомат. Lett. 2, 741–748. DOI: 10.1109 / LRA.2017.2651946

    CrossRef Полный текст | Google Scholar

    Горла К., Даволи П., Роза Ф., Лонгони К., Чиоцци Ф. и Самарани А. (2008). Теоретический и экспериментальный анализ циклоидного редуктора скорости. J. Mech. Des. 130: 112604. DOI: 10.1115 / 1.2978342

    CrossRef Полный текст | Google Scholar

    Groothuis, S. S., Folkertsma, G.A., и Stramigioli, S. (2018). Общий подход к достижению стабильности и безопасного поведения в распределенных роботизированных архитектурах. Фронт. Робот. AI 5: 108. DOI: 10.3389 / frobt.2018.00108

    CrossRef Полный текст | Google Scholar

    Хаддадин, С., Альбу-Шеффер, А., и Хирцингер, Г. (2009). Требования к безопасным роботам: измерения, анализ и новые идеи. Внутр. J. Робот. Res , 28, 1507–1527. DOI: 10.1177 / 0278364

    3970

    CrossRef Полный текст | Google Scholar

    Хаддадин, С., Крофт, Э. (2016). «Физическое взаимодействие человека и робота», в Справочник по робототехнике Springer (Cham: Springer), 1835–1874.DOI: 10.1007 / 978-3-319-32552-1_69

    CrossRef Полный текст | Google Scholar

    HALODI Robotics (2018). ДВИГАТЕЛЬ с прямым приводом Revo1 ™ [Брошюра], Moss. Доступно в Интернете по адресу: https://www.halodi.com/revo1 (по состоянию на 30 апреля 2020 г.).

    Хэм, Р. В., Шугар, Т. Г., Вандерборг, Б., Холландер, К. В., и Лефебер, Д. (2009). Соответствующие конструкции приводов. Робот IEEE. Автомат. Mag. 16, 81–94. DOI: 10.1109 / MRA.2009.933629

    CrossRef Полный текст | Google Scholar

    Гармонический привод A.G. (2014) Наборы компонентов CSD-2A для технических данных . Каталог.

    Хлебаня Г., Куловец С. (2015). «Разработка плоскоцентрической коробки передач на основе геометрии S-образной шестерни», в 11. Kolloquium Getriebetechnik (Мюнхен), 205–216.

    Google Scholar

    Хоган, Н. (1984). «Контроль импеданса: подход к манипуляции», , 1984 American Control Conference (Сан-Диего, Калифорния: IEEE), 304–313. DOI: 10.23919 / ACC.1984.4788393

    CrossRef Полный текст | Google Scholar

    Хори, К., и Hayashi, I. (1994). Максимальный КПД обычных механических планетарных шестерен парадокса для редуктора. Пер. Jpn. Soc. Мех. Англ. 60, 3940–3947. DOI: 10.1299 / kikaic.60.3940

    CrossRef Полный текст

    Хантер И. В., Холлербах Дж. М. и Баллантайн Дж. (1991). Сравнительный анализ актуаторных технологий для робототехники. Робот. Rev. 2, 299–342.

    Google Scholar

    IMSystems (2019). проезд Архимеда.IMSystems — Drive Innovation [Брошюра], Делфт.

    Икбал, Дж., Цагаракис, Н. Г., и Колдуэлл, Д. Г. (2011). «Дизайн носимого оптимизированного экзоскелета руки с прямым приводом», в документе International Conference on Advances in Computer-Human Interactions (ACHI) (Gosier).

    PubMed Аннотация | Google Scholar

    Канаи Ю., Фудзимото Ю. (2018). «Бездатчиковое управление для экзоскелета с электроприводом с использованием приводов с высокой степенью обратного привода», в IECON 2018–44-й ежегодной конференции Общества промышленной электроники IEEE (Вашингтон, округ Колумбия: IEEE), 5116–5121.DOI: 10.1109 / IECON.2018.85

    CrossRef Полный текст | Google Scholar

    Капелевич А. и ООО «AKGears» (2013 г.). Анализ планетарных передач с высоким передаточным числом. Коэффициент 3, 10.

    Google Scholar

    Караяннидис Ю., Друкас Л., Папагеоргиу Д. и Доулжери З. (2015). Управление роботом для выполнения задач и повышения безопасности при ударах. Фронт. Робот. AI 2:34. DOI: 10.3389 / frobt.2015.00034

    CrossRef Полный текст | Google Scholar

    Кашири, Н., Abate, A., Abram, S.J., Albu-Schaffer, A., Clary, P.J., Daley, M., et al. (2018). Обзор принципов энергоэффективного передвижения роботов. Фронт. Робот. AI 5: 129. DOI: 10.3389 / frobt.2018.00129

    CrossRef Полный текст | Google Scholar

    Ким, Дж., Парк, Ф. К., Парк, Ю., и Шизуо, М. (2002). Проектирование и анализ сферической бесступенчатой ​​трансмиссии. J. Mech. Des . 124, 21–29. DOI: 10.1115 / 1.1436487

    CrossRef Полный текст | Google Scholar

    Классен, Дж.Б. (2019). Дифференциальная планетарная коробка передач . Международный патент № WO2019 / 051614A1. Женева: Всемирная организация интеллектуальной собственности, Международное бюро.

    Google Scholar

    Коряков-Савойский Б., Алексахин И., Власов И. П. (1996). Зубчатая передача . Патент США № US5505668A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Ли С. (2014). «Новейшие технологии проектирования зубчатых передач с большим передаточным числом», в Proceedings of International Gear Conference (Lyon), 427–436.DOI: 10.1533 / 9781782421955.427

    CrossRef Полный текст | Google Scholar

    Looman, J. (1996). Zahnradgetriebe (зубчатые механизмы) . Берлин: Springer-Verlag. DOI: 10.1007 / 978-3-540-89460-5

    CrossRef Полный текст

    Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Конвенс, Б., Вандерборгт, Б., и Лефебер, Д. (2018). «Конструкция планетарного редуктора для активной носимой робототехники, основанная на анализе видов отказов и последствий (FMEA)», в International Symposium on Wearable Robotics (Pisa), 460–464.DOI: 10.1007 / 978-3-030-01887-0_89

    CrossRef Полный текст | Google Scholar

    Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019a). «Редукторы Wolfrom для легкой робототехники, ориентированной на человека», в Proceedings of the International Conference on Gears 2019 (Munich: VDI), 753–764.

    Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019b). «Настройка планетарных зубчатых передач для поддержки и воспроизведения конечностей человека», в MATEC Web of Conferences (Варна: EDP Sciences), 01014.DOI: 10.1051 / matecconf / 201928701014

    CrossRef Полный текст | Google Scholar

    Лафлин, К., Альбу-Шеффер, А., Хаддадин, С., Отт, К., Стеммер, А., Вимбек, Т., и Хирцингер, Г. (2007). Легкий робот DLR: концепции проектирования и управления роботами в среде обитания человека. Ind. Робот. Int. J . 34, 376–385. DOI: 10.1108 / 01439

    0774386

    CrossRef Полный текст | Google Scholar

    Макмиллан Р. Х. и Дэвис П. Б. (1965). Аналитическое исследование систем раздвоенной передачи энергии. J. Mech. Англ. Sci . 7, 40–47. DOI: 10.1243 / JMES_JOUR_1965_007_009_02

    CrossRef Полный текст | Google Scholar

    Mayr, C. (1989). Präzisions-Getriebe für die Automation: Grundlagen und Anwendungsbeispiele . Ландсберг: Verlag Moderne Industrie.

    Мишель С. (2015). Logarithmische spirale statt evolvente. Maschinenmarkt № . 18, 40–42.

    Михайлидис А., Афанасопулос Э. и Оккас Э. (2014). «Эффективность циклоидного редуктора», в International Gear Conference (Lyon Villeurbanne), 794–803.DOI: 10.1533 / 9781782421955.794

    CrossRef Полный текст | Google Scholar

    Морозуми, М. (1970). Эвольвентное внутреннее зацепление со смещенным профилем . Патент США № US3546972A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Мюллер, Х. В. (1998). Die Umlaufgetriebe: Auslegung und vielseitige Anwendungen . Берлин; Гейдельберг: Springer-Verlag. DOI: 10.1007 / 978-3-642-58725-2

    CrossRef Полный текст | Google Scholar

    Мульцер, Ф.(2010). Systematik hoch übersetzender koaxialer getriebe (докторская диссертация). Технический университет Мюнхена, Мюнхен, Германия.

    Google Scholar

    Musser, C. W. (1955). Деформационно-волновая передача . Патент США № US2

    3A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    НАБТЕКО (2018). Прецизионный редуктор серии RV — N . CAT.180410. Каталог.

    Нойгарт, А. Г. (2020). Линия эконом-класса PLE .Каталог.

    Ниманн Г., Винтер Х. и Хён Б. Р. (1975). Maschinenelemente, Vol. 1 . Берлин; Гейдельберг; Нью-Йорк, штат Нью-Йорк: Спрингер.

    Google Scholar

    Pasch, K. A., and Seering, W. P. (1983). «О приводных системах для высокопроизводительных машин», в Машиностроение (Нью-Йорк, Нью-Йорк: Машиностроение Общества ASME-AMER), 107–107.

    Pennestri, E., and Freudenstein, F. (1993). Механический КПД планетарных зубчатых передач. ASME J. Mech. Des . 115, 645–651. DOI: 10.1115 / 1.2

    9

    CrossRef Полный текст | Google Scholar

    Петтерссон, М., и Олвандер, Дж. (2009). Оптимизация трансмиссии промышленных роботов. IEEE Trans. Робот. 25, 1419–1424. DOI: 10.1109 / TRO.2009.2028764

    CrossRef Полный текст | Google Scholar

    Фам, А. Д., и Ан, Х. Дж. (2018). Прецизионные редукторы для промышленных роботов, участвующих в четвертой промышленной революции: современное состояние, анализ, дизайн, оценка производительности и перспективы. Внутр. J. Precis. Англ. Manuf. Green Technol. 5, 519–533. DOI: 10.1007 / s40684-018-0058-x

    CrossRef Полный текст | Google Scholar

    Резазаде, С., Херст, Дж. У. (2014). «Об оптимальном выборе двигателей и трансмиссий для электромеханических и роботизированных систем», в Международная конференция IEEE / RSJ 2014 по интеллектуальным роботам и системам (Чикаго, Иллинойс: IEEE), 4605–4611. DOI: 10.1109 / IROS.2014.6943215

    CrossRef Полный текст | Google Scholar

    Роос, Ф., Йоханссон, Х., Викандер, Дж. (2006). Оптимальный выбор двигателя и редуктора для мехатронных приложений. Мехатроника 16, 63–72. DOI: 10.1016 / j.mechatronics.2005.08.001

    CrossRef Полный текст | Google Scholar

    Розенбауэр Т. (1995). Getriebe für Industrieroboter: Beurteilungskriterien . Kenndaten, Einsatzhinweise: шейкер.

    Россман, А. М. (1934). Механический механизм . Патент США № US 1970251. Вашингтон, округ Колумбия: У.S. Ведомство по патентам и товарным знакам.

    Google Scholar

    Saerens, E., Crispel, S., García, P. L., Verstraten, T., Ducastel, V., Vanderborght, B., and Lefeber, D. (2019). Законы масштабирования для роботизированных трансмиссий. мех. Мах. Теория 140, 601–621. DOI: 10.1016 / j.mechmachtheory.2019.06.027

    CrossRef Полный текст | Google Scholar

    Шафер И., Бурлье П., Хантшак Ф., Робертс Э. У., Льюис С. Д., Форстер Д. Дж. И Джон К. (2005). «Космическая смазка и характеристики шестерен гармонического привода», , 11-й Европейский симпозиум по космическим механизмам и трибологии, ESMATS 2005 (Люцерн), 65–72.

    Google Scholar

    Шейнман, В., Маккарти, Дж. М., и Сонг, Дж. Б. (2016). «Механизм и приведение в действие», в Springer Handbook of Robotics (Cham: Springer), 67–90. DOI: 10.1007 / 978-3-319-32552-1_4

    CrossRef Полный текст | Google Scholar

    Шемпф, Х. (1990). Сравнительное проектирование, моделирование и анализ управления роботизированными трансмиссиями (кандидатская диссертация). № WHOI-90-43. Кафедра машиностроения и Океанографический институт Вудс-Холла, Массачусетский технологический институт, Кембридж, Массачусетс, США.DOI: 10.1575 / 1912/5431

    CrossRef Полный текст | Google Scholar

    Шемпф Х. и Йоргер Д. Р. (1993). Изучение доминирующих рабочих характеристик в трансмиссиях роботов. ASME J. Mech. Des. 115, 472–482. DOI: 10.1115 / 1.2

    4

    CrossRef Полный текст | Google Scholar

    Шорш, Дж. Ф. (2014). Составной планетарный привод трения . Патент Нидерландов № 2013496. Де Хааг: Octrooicentrum Nederland.

    Google Scholar

    Шрайбер, Х.(2015). «Revolutionäres getriebeprinzip durch neuinterpretation von maschinenelementen — Die WITTENSTEIN Galaxie®-Kinematik», в Dresdner Maschinenelemente Kolloquium, DMK (Дрезден), 2015. С.

    Шрайбер, Х., Рётлингсхёфер, Т. (2017). «Кинематическая классификация коробки передач, содержащей отдельные упорные зубья, и ее преимущества по сравнению с существующими подходами», в Международной конференции по зубчатым колесам, ICG (Мюнхен).

    Шрайбер, Х., и Шмидт, М.(2015). Getriebe. Патент Германии № DE 10 2015 105 525 A1. Мюнхен: Deutsches Patent- und Markenamt.

    Google Scholar

    Сенсинджер, Дж. У. (2010). «Выбор двигателей для роботов с использованием биомиметических траекторий: оптимальные критерии, обмотки и другие соображения», в Международная конференция IEEE по робототехнике и автоматизации 2010 г. (Анкоридж, AK: IEEE), 4175–4181. DOI: 10.1109 / ROBOT.2010.5509620

    CrossRef Полный текст | Google Scholar

    Сенсинджер, Дж.W. (2013). КПД высокочувствительных зубчатых передач, например, циклоидных передач. ASME J. Mech. Des. 135, 071006-1–071006-9. DOI: 10.1115 / 1.4024370

    CrossRef Полный текст | Google Scholar

    Сенсингер, Дж. У., Кларк, С. Д., Шорш, Дж. Ф. (2011). «Внешний и внутренний роторы в роботизированных бесщеточных двигателях», Международная конференция IEEE по робототехнике и автоматизации, 2011 г., (Монреаль, Квебек, IEEE), 2764–2770. DOI: 10.1109 / ICRA.2011.5979940

    CrossRef Полный текст | Google Scholar

    Сеок, С., Wang, A., Chuah, M. Y. M., Hyun, D. J., Lee, J., Otten, D. M., et al. (2014). Принципы разработки энергоэффективного передвижения на ногах и их реализация на роботе-гепарде Массачусетского технологического института. IEEE / ASME Trans. Мех. 20, 1117–1129. DOI: 10.1109 / TMECH.2014.2339013

    CrossRef Полный текст | Google Scholar

    Сицилиано Б., Шавикко Л., Виллани Л. и Ориоло Г. (2010). Робототехника: моделирование, планирование и управление . Лондон: Springer Science and Business Media. DOI: 10.1007 / 978-1-84628-642-1

    CrossRef Полный текст | Google Scholar

    Слэттер Р. (2000). Weiterentwicklung eines Präzisionsgetriebes für die Robotik . Санкт-Леонард: Antriebstechnik.

    Google Scholar

    ПОЗВОНОЧНИК (2017). TwinSpin — высокоточные редукторы — Präzisionsgetriebe . Каталог.

    Страмиджоли, С., Ван Оорт, Г., и Дертьен, Э. (2008). «Концепция нового энергоэффективного привода», Международная конференция IEEE / ASME по передовой интеллектуальной мехатронике, 2008 г., (Сиань: IEEE), 671–675.DOI: 10.1109 / AIM.2008.4601740

    CrossRef Полный текст | Google Scholar

    СУМИТОМО (2017). Fine Cyclo® Spielfreie Präzisionsgetriebe . Каталог 9 DE 02/2017.

    СУМИТОМО (2020). Приводы управления движением E-Cyclo®. Каталог F10001E-1.

    Талбот Д., Кахраман А. (2014). «Методология прогнозирования потерь мощности планетарных передач», International Gear Conference (Lyon-Villeurbanne), 26–28. DOI: 10.1533 / 9781782421955.625

    CrossRef Полный текст

    Томчик, Х. (2000). Регулирующее устройство с планетарной передачей . Европейский патент № EP1244880B1. Мюнхен: Европейское патентное ведомство.

    Google Scholar

    Toxiri, S., Näf, M. B., Lazzaroni, M., Fernández, J., Sposito, M., Poliero, T., et al. (2019). «Опорные экзоскелеты для профессионального использования: обзор технологических достижений и тенденций», в IISE Trans. Ок. Эргон. Гм. Факторы 7, 3–4, 237–249.DOI: 10.1080 / 24725838.2019.1626303

    CrossRef Полный текст | Google Scholar

    Ван де Стрете, Х. Дж., Дегезель, П., Де Шуттер, Дж., И Бельманс, Р. Дж. (1998). Критерий выбора серводвигателя для мехатронных приложений. IEEE / ASME Trans. Мех. 3, 43–50. DOI: 10.1109 / 3516.662867

    CrossRef Полный текст | Google Scholar

    Вил, А. Дж., И Се, С. К. (2016). На пути к совместимым и пригодным для носки роботизированным ортезу: обзор текущих и новых актуаторных технологий. Med. Англ. Phys. 38, 317–325. DOI: 10.1016 / j.medengphy.2016.01.010

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Verstraten, T., Furnémont, R., Mathijssen, G., Vanderborght, B., and Lefeber, D. (2016). «Энергопотребление мотор-редукторов постоянного тока в динамических приложениях: сравнение подходов к моделированию», в IEEE Robot. Автомат. Lett. 1, 524–530. DOI: 10.1109 / LRA.2016.2517820

    CrossRef Полный текст | Google Scholar

    Враниш, Дж.М. (1995). Планетарный привод без несущей с люфтом . Патент США № US5409431. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Враниш, Дж. М. (2006). Подшипники с частичным зубчатым колесом . Патент США № US2006 / 0219039A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Ван, А., Ким, С. (2015). «Направленная эффективность в редукторных трансмиссиях: характеристика обратного движения в направлении улучшения проприоцептивного контроля», в Международная конференция по робототехнике и автоматизации (ICRA) 2015 IEEE (ICRA) (Сиэтл, Вашингтон, IEEE), 1055–1062.DOI: 10.1109 / ICRA.2015.7139307

    CrossRef Полный текст | Google Scholar

    Вайнберг, Б., Мавроидис, К., и Враниш, Дж. М. (2008). Привод подшипника шестерни . Патент США № US2008 / 0045374A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    WinterGreen Research (2018). Прецизионные редукторы волны деформации и редукторы RV и RD: доли рынка, стратегия и прогнозы, во всем мире, с 2018 по 2024 год . WIN0418002.

    WITTENSTEIN AG (2020 г.). Technische Broschüre SP + und TP + Getrieben. Каталог.

    Вольф, А. (1958). Die Grundgesetze der Umlaufgetriebe . Брауншвейг: Фридр. Vieweg и Sohn.

    Вольфром, У. (1912). Der Wirkungsgrad von Planetenrädergetrieben. Werkstattstechnik 6, 615–617.

    Ю. Д., Бичли Н. (1985). О механическом КПД дифференциала. ASME J. Mech. Пер. Автомат. 107, 61–67.DOI: 10.1115 / 1.3258696

    CrossRef Полный текст | Google Scholar

    Зинн М., Рот Б., Хатиб О. и Солсбери Дж. К. (2004). Новый подход к срабатыванию для создания роботов, удобных для человека. Внутр. J. Робот. Res. 23, 379–398. DOI: 10.1177 / 02783642193

    CrossRef Полный текст | Google Scholar

    Как указать редукторы для систем управления движением

    Редукторы можно использовать для точной настройки рабочих характеристик оси движения.Чаще всего они считаются умножителями крутящего момента, но на самом деле они выполняют несколько других функций, включая согласование скорости, уменьшение инерции и увеличение разрешения. Правильный выбор коробки передач для серводвигателя или шагового двигателя включает в себя учет параметров машины, требований к применению, условий окружающей среды, механических факторов и, конечно же, бюджета. Здесь мы рассмотрим процесс определения размеров и выбора коробки передач для сервопривода или шаговой системы с прицелом на достижение требуемой производительности по цене, которая не нарушит банкноты.

    Зачем нужны редукторы?

    Зубчатая передача может играть несколько ролей в системах движения. Давайте начнем с рассмотрения передаточного числа G, , которое определяется как:

    G = D 2 / D 1

    Если мы прикрепим двигатель с крутящим моментом t 1 и входной скоростью w 1 , то выход коробки передач будет

    t 2 = t 1 G

    w 2 = w 1 / N

    Другими словами, коробка передач действует как мультипликатор крутящего момента и редуктор скорости.Умножение крутящего момента позволяет управлять системой с гораздо меньшим двигателем, экономя деньги и пространство.

    Для некоторых приложений роль редуктора как редуктора так же важна, как и его функция как мультипликатор крутящего момента. Например, рост кристаллов требует постепенного подъема були из барабана, в котором находится расплав. Чтобы кристалл оставался как можно более круглым, гладким и однородным, всю сборку необходимо вращать очень постепенно, со скоростью 15 ° в час.

    Сервосистема обеспечивает жесткий контроль угловой скорости, но серводвигатели обычно не работают должным образом и не генерируют большой крутящий момент на низких скоростях. Добавление коробки передач позволяет серводвигателю работать с оптимальной скоростью с точки зрения управления, при этом создавая скромный крутящий момент, который увеличивается до требуемых уровней за счет передаточного числа.

    Коробки передач

    также очень полезны для согласования по инерции. Недостаточно для двигателя запустить нагрузку; ему также необходимо контролировать и замедлять его.Если инерция нагрузки будет намного выше, чем у двигателя, ось не сможет позиционировать нагрузку в нужном месте и в требуемое время, что снизит производительность. Здесь может помочь коробка передач.

    Увеличивая крутящий момент двигателя, редуктор также эффективно увеличивает способность двигателя управлять нагрузкой. Инерция, отраженная от нагрузки, J R , масштабируется передаточным числом как:

    J R = J L / G 2 + J G

    , где J G — инерция коробки передач.

    Коробка передач масштабирует отраженную инерцию пропорционально квадрату передаточного числа. Это свойство позволяет двигателю меньшего размера эффективно управлять большей нагрузкой. Такой подход позволяет сэкономить деньги, уменьшить размер и повысить производительность. Однако важно помнить, что коробка передач действительно способствует общей инерции.

    Передаточное число также увеличивает разрешающую способность шагового двигателя. «Шаги уменьшаются непосредственно за счет передаточного числа редукторов», — говорит Брайен Ширей, технический директор CGI Gear (Карсон-Сити, Невада).«У вас гораздо более высокое разрешение на выходном валу редуктора».

    Еще одно менее ценное преимущество редукторов заключается в том, что они могут снизить шум при работе в сервосистемах. «Существует заблуждение, что сервоприводы громкие», — говорит Джо Шнайдер, руководитель группы разработки приложений в Виттенштейне (Бартлетт, Иллинойс). «Однако двигатель сам создает много шума. Вы начинаете слышать шум намотки, особенно когда он работает с более высокой загрузкой. Если коробка передач имеет правильный размер, шум снижается, потому что вы не так сильно работаете с двигателем.Коробка передач делает свою работу ».

    Коробки передач

    действительно требуют компромиссов. Они увеличивают размер и вес системы, хотя это в некоторой степени может быть компенсировано соответствующим уменьшением размера двигателя. Они увеличивают стоимость, хотя комбинация двигатель / коробка передач может быть дешевле, чем двигатель большего размера. В любом случае коробки передач усложняют систему и усложняют ее. Они увеличивают количество задач по обслуживанию и мониторингу. Последние проблемы можно в значительной степени уменьшить, правильно указав редуктор для приложения.Давайте посмотрим, как это сделать.

    Сбор требований к заявкам

    Для определения коробки передач для системы управления движением требуется гораздо больше, чем просто данные о крутящем моменте или скорости. Прежде чем искать в Интернете или брать трубку, чтобы позвонить поставщику, составьте подробное описание приложения с как можно большим количеством технической информации.

    Ключевые параметры включают:

    • Инерция нагрузки: Воспользуйтесь навыками вашего поставщика.Большинство производителей предлагают программное обеспечение для калибровки, некоторые из которых довольно сложные. Работайте с разработчиками приложений, отправляя им изображения вашей системы в САПР и любую другую доступную информацию.
    • Профиль движения: Подробная информация о полном профиле движения, включая время ускорения ( t согласно ), время непрерывной работы ( t продолжение ), время замедления ( t дек ) и время ожидания ( т жилая ).По ним можно определить:
    • Максимальная непрерывная скорость (N co n t ): Рассчитайте максимальную непрерывную скорость, необходимую для цикла движения, поскольку она будет использоваться для определения передаточного числа.
    • Рабочий цикл: Это количество времени, затрачиваемого в каждом цикле на перемещение, а не на проживание. Его можно использовать для определения типа происходящего движения, что поможет определить масштабные коэффициенты, используемые в процессе определения размеров.
    • Схема: Хотя большинство приложений могут обслуживаться несколькими типами редукторов, конфигурации и ограниченное пространство для некоторых приложений требуют определенных форм-факторов; например, угловая коробка передач в системе рулевого управления AGV.
    • Экологические проблемы: Сюда входят температура, давление, влажность, загрязнение и т. Д.

    Определить крутящий момент

    Приведенные выше параметры можно использовать для расчета:

    • Момент ускорения ( T согласно )
    • Крутящий момент при продолжительной работе ( T cont )
    • Момент замедления ( T дек )
    • Dwell крутящий момент ( T dwell )

    Мы будем использовать эти два набора данных для определения среднего кубического выходного крутящего момента и использовать его для расчета передаточного числа, необходимого для данного приложения.

    Коробке передач недостаточно крутящего момента, чтобы управлять нагрузкой. Он также должен соответствовать требованиям к сроку службы приложения. Усталость материала — один из наиболее распространенных видов отказов редукторов. Для коробки передач неправильного размера повторяющиеся нагрузки могут привести к поломке и деформации зубьев или к дефектам подшипников. Оборудование работает неэффективно и преждевременно (а иногда и катастрофически) выходит из строя. Чтобы свести к минимуму эти проблемы, производители используют нагрузочные испытания для определения предела прочности на разрыв (точка разрушения), предела текучести (точка необратимого повреждения) и предела выносливости (максимальное напряжение, которое может применяться в течение неограниченных циклов без повреждения) материала коробки передач.Эти данные составляют основу номинальных характеристик коробки передач.

    Определенные условия, такие как интенсивная эксплуатация, высокие ударные нагрузки и экстремальные температуры, могут усилить нагрузку на коробку передач. В результате мощность редукторов снижается при определенных обстоятельствах (например, с учетом эксплуатационного и прикладного факторов). Это происходит чаще для осей с непрерывным режимом работы, чем с системами с прерывистым режимом работы, но этот метод все же иногда применяется.

    Размер редуктора для одной оси в простой конфигурации может быть несложным, но для сложных многоосных систем процесс становится трудным в спешке.Здесь мы рассмотрим основы.

    Начните с определения рабочего цикла D , чтобы подтвердить, что система работает с перебоями. Мы определяем рабочий цикл как

    Движение считается прерывистым, если рабочий цикл меньше 60% и сумма t acc , t cont , t dec меньше 20 минут. Редукторы для прерывистого режима работы обычно не требуют снижения номинальных характеристик с учетом тепловых факторов, поскольку характер движения «старт-стоп» дает время для рассеивания тепла в каждом цикле.

    Движение считается непрерывным, если рабочий цикл составляет 60% или больше. Эти системы необходимо будет снизить, чтобы компенсировать тепловыделение.

    Рассчитайте средний крутящий момент на выходе куба (среднее значение T ):

    Просмотрите возможные редукторы и найдите тот, который может обеспечить следующие характеристики:

    T среднее T nomr

    т согласно и т дек т согласно

    , где T nomr — номинальный крутящий момент и номинальное ускорение.

    Рассчитать максимально допустимое передаточное число G max , используя

    G макс. = N макс. / N продолжение

    , где N maxr — максимальная номинальная входная частота вращения для предполагаемого редуктора.

    Мы можем рассчитать среднюю входную скорость N meani и максимальную входную скорость N maxi , используя

    N макс. = G N продолжение

    Еще раз проверьте, что рабочие скорости и ускорения находятся в пределах номинальных скоростей и ускорений.Кроме того, редукторы для серво / шаговых осей, работающих с непрерывным или прерывистым движением, должны быть снижены на температурный коэффициент K T и / или коэффициент удара K S , как показано в таблице ниже 1 :

    Таблица 1: Рекомендации по снижению номинальных значений для непрерывного и прерывистого движения

    Непрерывное движение

    Прерывистое движение

    Коэффициент выбора

    K T , K S

    К S

    Рассчитать

    T среднее K T K S

    T среднее K S

    Подтвердить

    T nomr > T среднее K T K S

    T nomr > T среднее K S

    Предоставлено Parker Bayside

    Также важно определить момент останова E и убедиться, что коробка передач может с ним справиться.Немедленная остановка может привести к столкновению зубов и, в худшем случае, к поломке. «Вы должны учитывать аварийную ситуацию или аварийную остановку», — говорит Джейсон Хейл, инженер по продажам в Nabtesco Motion Control (Фармингтон-Хиллз, Мичиган). «Может ли коробка передач справиться с грузом, движущимся со скоростью, с которой вы хотите его переместить, а затем остановиться на копейке? Или это повредит коробку передач? Вам нужно увеличить размер? Пришло время это проверить ».

    Убедитесь, что коробка передач может выдерживать возникающие нагрузки.Убедитесь, что операторы понимают, что функция должна использоваться только в аварийной ситуации, а не в качестве механизма остановки во время нормальной работы.

    Каковы механические аспекты?

    Следующим шагом является проверка механической конструкции, чтобы убедиться, что и двигатель, и коробка передач поддерживаются должным образом. Может возникнуть соблазн установить двигатель на редуктор вместо того, чтобы изолировать радиальные и осевые нагрузки с помощью внешней опоры подшипника. Это может обеспечить кратковременную экономию, но, скорее всего, приведет к преждевременному выходу из строя редуктора.

    В некоторых случаях моментная нагрузка может быть приложена приводом, например ремнем и шкивом или зубчатой ​​рейкой. «В таких случаях на выходной вал редуктора ложится заметная боковая нагрузка», — говорит Шири. «Если вы полагаетесь на подшипники редуктора, чтобы приспособиться к этому, то вам, безусловно, необходимо подобрать редуктор так, чтобы он мог выдерживать эту нагрузку. Это может быть причиной увеличения размера редуктора, даже если для этого не требуется большого крутящего момента ».

    Как правило, размеры корпуса двигателя и коробки передач должны быть согласованы.Попытка установить двигатель с рамой 75 на редуктор с рамой 34 приведет к возникновению опасной моментной нагрузки на переднюю поверхность шестерни, тем более что агрегаты обычно крепятся четырьмя болтами.

    Учитывать требования к точности

    Хотя все приложения различаются, в системах управления движением обычно используются прямозубые, червячные, планетарные шестерни или другие более сложные высокопроизводительные редукторы.

    «Для подавляющего большинства наших приложений мы используем серводвигатели или шаговые двигатели», — говорит Уолли Логан, вице-президент по инженерным вопросам компании Motion Solutions (Алиса Вьехо, Калифорния).«Что касается шаговых двигателей, мы обычно сначала используем прямозубый редуктор, а затем, если необходимо, переходим на планетарный. Для сервоприводов мы обычно пойдем другим путем. Обычно мы будем использовать планетарный редуктор, и реже мы можем использовать цилиндрический редуктор. Для приложений очень высокого уровня или приложений с жесткими ограничениями по упаковке мы иногда используем редукторы с гармоническим приводом ».

    Шестерням необходим некоторый конечный зазор между зубьями соответствующих шестерен, чтобы смазка могла проходить между ними.Когда входной вал или шестерня начинают вращаться, фактическое движение выходного вала или шестерни не может происходить до тех пор, пока этот зазор не будет восполнен. В результате каждая стандартная коробка передач имеет некоторый конечный люфт, который является основным фактором потери хода.

    Планетарный редуктор в приложениях: крутящий момент, скорость, сила от WITTENSTEIN в Северной Америке на Vimeo.

    Величина люфта зависит от профиля зуба, конструкции редуктора и качества изготовления.Прямозубые цилиндрические шестерни, входящие в контакт по всей длине зубьев шестерни одновременно, требуют наибольшего зазора и имеют наибольший люфт. Цилиндрические шестерни, в которых зубья имеют винтовой профиль по длине, так что процесс зацепления более постепенный, демонстрируют меньший люфт.

    Что касается конструкции редукторов, планетарные редукторы обладают очень хорошими характеристиками люфта. Планетарный редуктор состоит из центральной солнечной шестерни, окруженной тремя или более вращающимися «планетарными» шестернями, и все они заключены в кольцевую шестерню (см.Увеличенная площадь контакта повышает устойчивость. Высококачественные планетарные редукторы могут достигать люфта порядка угловых минут. Они очень эффективны и обеспечивают хорошие уровни передачи мощности. Все эти факторы делают их чрезвычайно популярными для использования с сервоприводами, сервоприводами и шаговыми двигателями.

    Принципы проектирования планетарных редукторов от WITTENSTEIN в Северной Америке на Vimeo.

    Следующая ступенька по лестнице производительности — циклоидальная коробка передач.Циклоидальные редукторы построены вокруг пары расположенных рядом эллиптических пластин, окруженных зубчатым венцом. Пластины вращаются по циклоидальной траектории, попеременно, так что одна из пластин постоянно находится в зацеплении с зубчатым венцом. В результате эти редукторы демонстрируют люфт от 0,3 до 0,5 угл. Мин. При испытании при полной нагрузке.

    Циклоидальные редукторы

    лучше всего подходят для приложений с высокими нагрузками и жесткими требованиями к позиционированию, например, для систем управления спутниковой тарелкой или индексных столов для роботизированной сварки.Циклоидальные редукторы имеют преимущества, особенно в случае индексных столов. Например, червячные передачи настроены на продвижение на заранее определенное количество градусов на индекс, определяемый количеством пусков червячной передачи. Конструкция циклоидального редуктора позволяет плавно позиционировать его.

    Для высокопроизводительных приложений, требующих высокого крутящего момента в самом маленьком и легком корпусе, Логан указывает на гармонические приводы. «Для их использования определенно требуется немного больше инженеров, особенно если вы собираетесь спроектировать механизм в индивидуальном приложении, а не просто использовать готовую коробку передач», — говорит Логан.«Существуют также редукторы с гармонической передачей, когда у вас есть двигатель с прямым приводом, приводящий в действие редуктор с гармонической передачей, все в одном корпусе. Мы разработали некоторые из них здесь, и они довольно невероятные. Вы можете получить огромный крутящий момент из очень маленького корпуса ». Он указывает на использование проигрывателя виниловых дисков для производства электроники, как пример, сочетающий высокую точность и высокую инерцию.

    Обязательно проконсультируйтесь с потенциальными поставщиками, чтобы определить, как они измеряют люфт.Некоторые компании рассчитывают теоретически, в то время как другие проводят тесты, чтобы подтвердить производительность.

    План эффективности

    Эффективность коробки передач всегда важна в реальных условиях эксплуатации. Неэффективные редукторы рассеивают энергию и выделяют тепло, которое необходимо контролировать. Наиболее распространенные редукторы, используемые для управления движением, перечисленные в порядке увеличения эффективности, — это прямозубые, косозубые, червячные и планетарные редукторы (см. Рисунок 1).В частности, КПД червячных редукторов может составлять всего 50%.

    Низкая эффективность — это не всегда плохо. В определенных обстоятельствах червячная передача с прямым углом может использоваться в качестве тормоза с отключенным питанием по сниженным ценам. «Прямоугольные червячные передачи являются самоблокирующимися при передаточном числе, скажем, 60: 1, поэтому некоторые люди используют прямоугольные червячные редукторы, потому что, когда машина выключена, коробка передач предотвращает вращение вала», — говорит Мэтт Хансон, генеральный директор по промышленным рынкам. в компании Bison Gear & Engineering (г.Чарльз, Иллинойс).

    Для приложений с прямым углом, требующих высокой эффективности, обычно требуется гипоидная передача. «В редукторах этих типов используются термообработанные и шлифованные гипоидные зубчатые передачи (КПД 85%), которые обеспечивают бесшумное и надежное зубчатое колесо», — добавляет Хансон.

    КПД коробки передач варьируется в зависимости от скорости, производство

    Рис. 1. В червячной передаче червячная передача (верхняя) вращается, чтобы поворачивать колесо.Червячные передачи эффективны, но имеют тенденцию к низкому КПД.

    соотношение и нагрузка. Редуктор, работающий без нагрузки, даст хорошие цифры, но они не будут иметь смысла в реальном контексте. Еще раз не забудьте спросить поставщика, как он измеряет эффективность.

    Определите правильный форм-фактор

    Производительность важна, но коробка передач должна вписываться в систему. Есть ли ограничения по размеру и весу? Требуются ли для компоновки конкретные конструкции, например, угловые редукторы, а не рядные редукторы? Нужен ли системе фаланговый выход для правильной сборки или он должен быть установлен на валу? Инженеры-конструкторы также имеют широкий выбор редукторов с полым отверстием, доступных в различных стилях, чтобы обеспечить кабели и оптоволоконные кабели.Эти конструкции особенно полезны для робототехники.

    Форм-факторы

    в первую очередь считаются вопросом удобства, но они также влияют на производительность. Коробка передач с прямым углом не может передавать мощность так же эффективно, как рядная конструкция. Для приложений с высоким крутящим моментом лучше использовать фланцевые крепления. Тем не менее, при тщательной спецификации и установке конструкции для фланцевого и скрытого монтажа могут работать одинаково хорошо.

    Не забывайте об охране окружающей среды Системы управления движением

    работают в самых разных средах, от чистых комнат до линий розлива сиропа и лесопильных заводов.При выборе коробки передач всегда следует учитывать условия окружающей среды. Редукторы, которые будут работать в гигиенических условиях, вероятно, потребуют кожухов с классом защиты IP и антикоррозионных покрытий. Устройства, предназначенные для чистых помещений, потребуют специальных смазок и уплотнений. Обязательно поднимите эти факторы во время обсуждений с поставщиками.

    А как насчет бюджета?

    За исключением некоторых аэрокосмических и военных приложений, каждый проект имеет бюджетные реалии.Выбор коробки передач дает еще одну степень свободы для достижения целей производительности при соблюдении бюджета.

    Для многих приложений, требующих высокой стоимости, конструкторы выбирают более дешевые версии стандартных редукторов управления перемещением. «Обычно в приложениях с шаговыми двигателями вы обычно рассматриваете стоимость [как первоочередную задачу]», — говорит Логан. «Ограниченный бюджет — это то, почему мы в первую очередь будем использовать шаговый двигатель, чтобы сразу сузить наш выбор до недорогой планетарной коробки передач или недорогой цилиндрической коробки передач.”

    Червячные редукторы, как правило, имеют довольно высокие передаточные числа, обеспечивая большое увеличение крутящего момента в довольно небольшом корпусе. Были и другие преимущества. «Червячные редукторы обычно работают довольно тихо», — говорит Логан, указывая на проект строительства кровати пациента для лечебного аппарата. «Мы начали с планетарной коробки передач с относительно высоким передаточным числом. При относительно высоких оборотах мотора, которые нам приходилось работать, коробка передач работала довольно шумно. Мы перешли на червячный редуктор, и шума стало намного меньше.Хотя коробка передач, вероятно, немного менее эффективна, для нас компромисс заключался в меньшем уровне шума от коробки передач с таким же высоким передаточным числом ».

    Коробки передач

    — важные инструменты в арсенале производителей оригинального оборудования. Их можно использовать в качестве мультипликаторов крутящего момента, редукторов скорости, устройств согласования момента инерции или даже инструментов для увеличения разрешения. При правильном выборе, установке и обслуживании коробка передач может работать без вмешательства в течение десятилетий. «Мы все время получаем коробки передач, которые были установлены в 90-х», — говорит Шнайдер.«Мы видим это, если коробка передач имеет правильный размер».

    Список литературы

    1. Прецизионные редукторы и мотор-редукторы для индустрии управления движением, Bayside Motion Group.
    2. http://www.parkermotion.com/literature/precision_cd/CD-EM/daedal/cat/english/Gearheads.pdf

    Как работает трансмиссия с двойным сцеплением

    Чтобы ответить на вопрос, нам нужен небольшой урок истории. Большинство водителей знают о двух типах трансмиссии, используемых при переключении передач на дороге; ручной и автоматический.
    Те, кто научился водить машину с механической коробкой передач, несомненно, помнят уроки владения педалью сцепления и рычагом переключения передач. В ручном режиме водитель нажимает на сцепление и управляет ручкой через набор передач. Если сделать это не плавно, автомобиль может раскачиваться, что означает не всегда комфортную поездку для пассажиров.
    Автоматическая коробка передач, обычно ассоциируемая с американскими автовладельцами, выполняет всю работу за водителя, используя сцепления, гидротрансформатор и шестерни.
    Коробка передач с двойным сцеплением (DCT) находится посередине. Этот тип технологии, также известный как полуавтоматическая трансмиссия, был обычным явлением в кругах автоспорта, но стал постоянно появляться в крупносерийных моделях.

    Развитие трансмиссии с двойным сцеплением


    Считается, что этот тип трансмиссии был изобретен французским военным инженером Адольфом Кегрессом до Второй мировой войны, но из-за проблем с его бизнесом он так и не разработал рабочую модель.
    Проблема с механическими коробками передач того времени заключалась в том, что ими было трудно управлять, требуя силы и времени, что вдохновило Kégresse на разработку плавной самопереключающейся коробки передач.
    Однако только в 1980-х годах DCT вновь вошла в мир гоночных автомобилей, где вопрос времени означал, что в соревнованиях учитывается каждая секунда. Тогда только в начале 2000-х он дебютировал в коммерческом автомобиле, подчеркнув, что DCT является относительно новой и быстроразвивающейся технологией в автомобильной промышленности.

    Как работает DCT?


    Хотя преимущества автоматической коробки передач по сравнению с механической кажутся очевидными (принимая на себя нагрузку с водителя), почему двойное сцепление рассматривается как все более популярная альтернатива, когда автоматические системы менее дороги и менее сложны?
    Причина в том, что DCT обеспечивает более быстрое переключение передач и большую экономию топлива, повышая эффективность по сравнению с другими типами трансмиссий.

    Прямоугольный редуктор для передачи крутящего момента для робота, используемый в «умной» вспомогательной инвалидной коляске

    Applied Resources — производитель Raptor, первого коммерчески доступного «умного» вспомогательного робота, одобренного Управлением по контролю за продуктами и лекарствами.Подразделение Phybotics компании Applied Resources Corp. представило роботизированную систему для инвалидных колясок Raptor в 2000 году. Raptor получил одобрение Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США в декабре 1999 года и вошел в историю в июне 2000 года как первая продажа оборудования, одобренного FDA. робот-инвалидная коляска в США. Raptor также продается в Нидерландах.

    Raptor оказывает помощь людям с тяжелыми формами инвалидности, использующим инвалидные коляски с электроприводом. Колено манипулятора робота содержит редуктор под прямым углом от Torque Transmission, который обеспечивает двойной выход вала через расширенный входной вал.

    Компания искала альтернативу тяжелым и дорогим металлическим коробкам передач, доступным на рынке, и обратилась за помощью в Torque Transmission. «Инженеры Torque Transmission оснастили наш стандартный RAB-1, прямоугольный угловой редуктор, специальной зубчатой ​​передачей, чтобы обеспечить больший крутящий момент для удовлетворения требований заказчика, — пояснил Джон Рамп, президент подразделения Torque Transmission. «В результате получился недорогой, очень легкий, но надежный привод», — заключил он.

    «Коробка передач с трансмиссией крутящего момента была выбрана из-за ее небольших габаритов, легкого веса и высокого крутящего момента», — отметил Крейг Вундерли, главный инженер отдела прикладных ресурсов.«Мы подвергли правые угловые приводы строгим испытаниям, и эти приводы успешно прошли все наши испытания», — заключил он.

    Угловой редуктор под углом

    Прямоугольный угловой редуктор (RAB) трансмиссии крутящего момента

    имеет размеры 3-21 / 32 дюйма x 3-15 / 16 дюйма x 1-1 / 4 дюйма в глубину и весит 12 унций. В нем используются шарикоподшипники и шестерни из закаленной стали с экранированной смазкой, он рассчитан на 1600 об / мин, а максимальная скорость 1/3 лошадиных сил составляет 3000 об / мин. RAB передачи крутящего момента также имеет выбор из одного или двух входов и передаточное число 1: 1 или 2: 1, правую или левую конфигурацию, и может работать в любом направлении.

    Основные характеристики

    • Низкая стоимость. Половина стоимости сопоставимых дисков в металлическом корпусе
    • Выбор материалов корпуса и вала: — Соответствует RoHos
    • Доступны нестандартные зубчатые колеса, длина корпуса и вала, а также материалы
    • Увеличенный срок службы
    • Меньше износ
    • Улучшенный контакт зубьев
    • Тихая работа
    • Наиболее эффективная конструкция передачи мощности в условиях номинальной нагрузки

    Типичное применение прямоугольных угловых редукторов передачи крутящего момента охватывает широкий спектр применений, включая медицинское и физиотерапевтическое оборудование, упаковочное оборудование или любые другие приложения, требующие малой мощности, где требуется высококачественная, но компактная, легкая и экономичная передача энергии.

    Узнать больше

    Torque Transmission специализируется на системах привода с дробной мощностью, но не ограничивается ими, и может работать со всеми различными скоростями и передаточными числами двигателей. В Torque Transmission инженер-конструктор не привязан к конкретной конструкции. Вы найдете команду, готовую предложить решения.

    Обратитесь в компанию Torque Transmission прямо сейчас, чтобы мы смогли найти недорогую коробку передач, соответствующую вашим потребностям и вашему бюджету.

    Читатели, интересующиеся коробкой передач для роботов, заинтересованы в этих связанных сообщениях:

    Автоматические коробки передач — все, что вам нужно знать

    Коробка передач DSG работает по тому же принципу, что и автоматическая коробка передач с одним сцеплением (подробнее об этом позже), но, как следует из названия, использует два сцепления.Идея состоит в том, что они могут выровнять передачу, которая, по их мнению, вам понадобится следующей, на одном сцеплении, в то время как другое все еще используется для управления автомобилем, и это позволяет чрезвычайно быстро переключать передачи.

    Однако из-за того, как они работают, автоматика с двойным сцеплением имеет тенденцию к рывкам, чем блоки гидротрансформатора, на более низких скоростях. Они также могут быть слишком заинтересованы в быстром переходе на более высокие передачи, оставляя машину на неправильной передаче, чтобы обеспечить наилучшее ускорение для обгона. Однако, чтобы противостоять этому, большинство из них также позволяют водителю переключать передачи вручную, часто с помощью подрулевых переключателей за рулевым колесом автомобиля.

    Их сложность — еще один недостаток; в последние годы старые агрегаты приобрели репутацию плохой надежности, и некоторые владельцы сообщают о том, что их агрегаты нуждаются в дорогостоящих ремонтных работах.


    CVT автомат

    Также известен как e-CVT, Xtronic

    Для Механически простой и надежный; экономичный

    против Обычно шумит; может быть вялым; мало возможностей для ручного управления

    Бесступенчатая трансмиссия (CVT) необычна тем, что в ней не используются зубцы для шестерен, как в традиционной коробке передач.Вместо этого он работает как шестерни на вашем велосипеде.

    Внутри коробки передач CVT вы найдете два шкива конической формы: один соединен с двигателем, а другой ведет колеса, соединенные ремнем. Шкивы непрерывно расширяются и сжимаются в диаметре при ускорении или замедлении, что изменяет передаточное число.

    Поскольку передаточное число бесконечно регулируется между самым высоким и самым низким передаточным числом, двигатель остается в своем диапазоне мощности при ускорении, вместо того, чтобы входить и выходить из наиболее эффективного диапазона оборотов двигателя, как в случае с другими типами коробок передач. .Более того, нет фиксированных передач, нет переключения передач, а это означает плавное ускорение без толчков.

    (PDF) Разработка планетарного редуктора с низким люфтом для роботов-гуманоидов

    128 ▪ ТОМ. 45, № 1, 2017 FME Transactions

    шестерни, оба стационарные. Осевое смещение

    планетарной шестерни достигается за счет использования необходимого количества регулировочных шайб

    (DIN 988), которые устанавливаются на оси планетарной шестерни

    .

    Из-за небольших размеров представленный знак de-

    не содержит элементов для выравнивания неравномерного распределения нагрузки между планетарными шестернями, поэтому очень важно обеспечить высокий класс точности планетарной передачи. manu-

    изготовленных деталей и элементов, а также точная сборка.

    Представленное решение имеет более высокую нагрузочную способность, низкий люфт

    , высокий КПД и существенно меньшую цену

    по сравнению с гармоническим приводом — таблица 1.

    Таблица 1. Сравнение гармонического привода и спроектированного планетарного редуктора

    с коническими шестернями

    Гармонический привод

    CPU-14A-100-M

    Планетарный

    Редуктор

    Крутящий момент [Нм] 7,8 … 11 40

    Передаточное число

    100 5

    Люфт [угл. Мин]

    <1 <4 (расчетный)

    КПД [%] 65 97

    Вес [кг] 0,54 0,60

    Размеры [мм] Ø78×32 Ø76×34

    Цена [€] 1200 240

    Грузоподъемность в четыре раза больше, чем у гармонического привода

    , КПД выше, а цена

    в пять раз ниже (цена нового редуктора (G)

    , включая ).Масса планетарного редуктора на 10% больше

    при почти таких же габаритах. Существенным преимуществом гармонического привода

    является низкий люфт

    (<1 угл. Мин.). Люфт планетарного редуктора

    должен определяться на реальной модели, но, по оценкам,

    составляет менее 4 угловых минут [7]. Передаточное число планетарной передачи

    в 20 раз меньше, поэтому необходимо выбрать новую головку редуктора

    (G) (с 20-кратным передаточным числом)

    , чтобы обеспечить кинематико-динамические требования —

    измерения (угловая скорость и крутящий момент на плече).

    Тем не менее, редукторы с большими значениями передаточного числа

    имеют меньший КПД и больший люфт. Первое решение

    (G + HD) имеет меньший люфт в

    по сравнению с предложенным решением (G + PG), в то время как общая эффективность

    лучше для решения (G + PG) — она ​​на

    на 5% выше .

    5. ЗАКЛЮЧЕНИЕ

    Типичная механическая трансмиссия в робототехнике-гуманоиде

    должна иметь высокую грузоподъемность, минимальный люфт, как

    , чтобы сохранять позиционирование и повторять-

    Легкость движения, высокая эффективность настолько меньше Двигатели

    могут быть использованы, компактная конструкция, малые габаритные размеры

    и масса

    , а также приемлемая цена производства.

    Предлагаемое решение планетарного редуктора с коническими шестернями

    имеет низкий люфт (<4 угл. Мин.), Высокую нагрузочную способность

    , что в четыре раза больше, чем у привода harmo-

    nic, более высокий КПД и цену. на

    на

    меньше в пять раз. Вес планетарного редуктора на 10% больше

    , а габаритные размеры почти такие же. Существенным преимуществом гармонического привода

    является низкий люфт

    (менее одной угловой минуты), который очень важен для позиционирования и повторяемости движения —

    .Указанные характеристики в совокупности с малой массой, габаритными размерами

    и низкой производственной ценой оправдывают применение представленного решения

    .

    Минимизация люфта в планетарной коробке передач

    может быть достигнута за счет использования косозубых шестерен и двойных косозубых шестерен

    . Более высокое передаточное отношение означает не только меньший люфт на

    , но и более высокую грузоподъемность шестерен,

    , поэтому очевидно, что применение косозубых шестерен или двойных косозубых шестерен

    может улучшить конструкцию.С другой стороны, косозубые шестерни

    создают осевые силы, которые крайне нежелательны, но их можно устранить с помощью двойных косозубых шестерен

    или шестерен типа «елочка». Угол наклона спирали

    может быть увеличен до 45 градусов, что увеличивает количество зубьев

    с зацеплением и грузоподъемность, а также минимизирует люфт

    , который является одним из объектов дальнейших исследований.

    Дальнейшие исследования будут также касаться параметрической оптимизации

    планетарных редукторов с цилиндрическими шестернями,

    косозубых шестерен

    и двойных косозубых шестерен (планируется практическая реализация этих редукторов

    для надежного определения

    различных люфтов). ценности и общая производительность).

    Реальные условия работы (неравномерное распределение нагрузки

    между планетарными шестернями) обычно не могут быть исправлены должным образом. Таким образом, в рамках дальнейших исследований необходимо исследовать напряженное состояние

    в зубцах шестерни методом конечных элементов (анализ FEM

    ).

    ПОДТВЕРЖДЕНИЕ

    Эта работа финансировалась Министерством образования и науки

    Республики Сербия по контракту

    III44008 и провинциальным секретариатом по науке и

    технологическому развитию по контракту 114-451-

    2116/2011 .Авторы благодарят Дункермоторен

    за поддержку и дарение моторов.

    СПИСОК ЛИТЕРАТУРЫ

    [1]

    Боровак, Б. и др .: Робот-гуманоид Марко — Ассистент

    по терапии для детей, в: Труды

    10-го Международного симпозиума по исследованиям и

    Дизайн для промышленности, 11.12.2014., Белград, стр. 1-6.

    [2] Савич, С., Ракович и др .: Нелинейное управление движением

    верхней части тела робота-гуманоида для манипуляций

    Задача, Facta Univer-sitatis: Автоматическое управление и

    Робототехника, Том.13, No. 1, pp. 1-14, 2014.

    [3] Каталог, Harmonic Drive AG, 2014.

    [4] Кузманович, С., Раков, М .: Мотор-редукторы с

    с низким люфтом в армии.

    Похожие записи

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *